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In this review, we summarize the results of our numerical work carried out over nearly ten
years on the complete determination of the 10th-order contribution to the anomalous magnetic
moments of leptons in the perturbation theory of quantum electrodynamics. Our approach is
based on a reorganized renormalization method in which no divergent quantities appear explic-
itly in any part of the calculation, which is crucial for the feasibility of numerical integration.
The enormous number of 10th-order diagrams and the complexity of the renormalization pro-
cedure are such that we could not have handled this problem without the development of an
automated code-generating algorithm. The systematic approach to these problems is described
in some detail.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

The anomalous magnetic moment of the electron ae was discovered in 1947 by Kusch and Foley
[1–3]. They measured the Zeeman splitting of the gallium atom and found a few % deviation from
Dirac’s relativistic quantum mechanics. They inferred that this deviation results from the electron g
value being slightly larger than Dirac’s prediction g = 2:

ae = (ge − 2)/2 = 0.001 15 (4). (1.1)

Together with the discovery of the Lamb shift [4], this gave a timely stimulus to the renormalization
theory of quantum electrodynamics (QED), which was being developed by Tomonaga [5,6] and
Schwinger [7]. Schwinger was the first to calculate ae in the framework of QED [8]. His result

ae = α

2π
= 0.001 161 · · · , (1.2)

where α is the fine structure constant, was in good agreement with the experiment, providing a
convincing proof of the validity of the newly developed QED.

Over the sixty years since 1947, many physicists have been involved in precision tests of the
electron and muon anomalous magnetic moments. The history of the physics of lepton g − 2, both
experimental and theoretical, can be found, for instance, in a recent publication [9].

The latest electron g − 2 measurement by the Harvard Group was carried out using a cylindrical
Penning trap [10–12]. Their initial result was announced in 2006 and the improved result was reported
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in 2008:

ae(HV06) = 1 159 652 180.76 (0.76) × 10−12, (1.3)

ae(HV08) = 1 159 652 180.73 (0.28) × 10−12 [0.24 ppb]. (1.4)

The latter is nearly 15 times more accurate than the previous best measurement by the Seattle
group [13].

The measurement of the anomalous magnetic moment of the muon aμ is constrained by the short
lifetime (2.197 × 10−6 s) of the muon. Thus, instead of a tiny Penning trap, the spin precession in a
large muon storage ring is used to measure aμ. The best value obtained so far is from the experiment
at Brookhaven. The average of the negative and positive muon measurements leads to the world’s
best value of aμ [14,15]:

aμ(BNL04) = 116 592 080 (63) × 10−11 [0.5 ppm]. (1.5)

Recently, the proton-to-muon magnetic moment ratio, which is used to determine the strength of
the magnetic field applied to the storage ring, has changed slightly [16]. This causes a small shift in
aμ [17,18]:

aμ(BNL08) = 116 592 089 (63) × 10−11 [0.5 ppm]. (1.6)

The Brookhaven experiment was shut down, but two new experiments are being prepared at
Fermilab [19] and J-PARC [20,21]. Both aim to improve the relative precision to 0.1 ppm.

Up to which order of the QED perturbation theory do we need to meet the precision of the mea-
surements (1.4) and (1.6)? For the electron, the very high precision of experiment (1.4) demands an
explicit theoretical value of the 10th-order term since(α

π

)5 ∼ 0.07 × 10−12 (1.7)

is not much smaller than the uncertainty of (1.4). The situation for the muon g − 2, whose measure-
ment uncertainty in (1.6) is about 9000 times larger than (1.7), looks quite different. However, aμ has
a huge numerical factor due to virtual electron loops, which depends logarithmically on the mass ratio
mμ/me. At 10th order, the effects of the light-by-light-scattering loop and two vacuum-polarization
loops amount to a factor ∼ 750:

∼ 750
(α

π

)5 ∼ 5.3 × 10−11, (1.8)

which, although still small compared with the measurement uncertainty, is no longer negligible, and
will become relevant when the experiment improves by an order of magnitude.

The number of Feynman diagrams contributing to the lepton g − 2 increases with the order of
perturbation at a faster than exponential rate. For the second, fourth, and sixth orders, the numbers
of diagrams are 1, 7, and, 72, respectively; see Figs. 1, 2, and 3. All diagrams up to the sixth order
are known analytically. However, even for the sixth order, the analytic work was not easy. It took
almost fifty years after Schwinger’s second-order calculation before all 72 diagrams of the sixth order
were evaluated analytically. The numbers of eighth- and 10th-order diagrams are 891 and 12 672,
respectively; see Figs. 4 and 5. Although some diagrams with relatively simple structure have been
evaluated analytically, it looks almost impossible to carry out a higher-order QED calculation by
analytic means.

At present, the only practical way to tackle the higher-order QED terms is by numerical inte-
gration. In Sects. 2 and 3, we summarize the results of our work on the electron g − 2 and muon
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Fig. 1. Second-order diagram contributing to lepton g − 2. There is one vertex Feynman diagram.

Fig. 2. Fourth-order diagrams contributing to lepton g − 2. There are seven vertex Feynman diagrams,
including the time-reversal symmetric diagrams.

Fig. 3. Representative sixth-order vertex diagrams contributing to lepton g − 2. There are 6 gauge-invariant
groups consisting of 72 Feynman vertex diagrams.

Fig. 4. Representative eighth-order vertex diagrams contributing to lepton g − 2. There are 13 gauge-invariant
groups consisting of 891 Feynman vertex diagrams.

g − 2. Section 4 presents our formulation of the QED calculation, adapted to the requirement of
numerical integration. Sections 5 and 6 are devoted to the treatment of ultraviolet (UV) and infrared
(IR) divergences, respectively. The residual renormalization is explained in Sect. 7 by treating some
lower-order diagrams as examples.

2. Theory of the electron g − 2

Since the electron is the lightest of the leptons, it is little affected by much heavier particles, such as
hadrons and weak bosons. In this sense the electron g − 2 is almost a pure QED system. In order to
compare the QED prediction of ae to the measurement, we need three input values from outside of
QED: the fine-structure constant α, the electron–muon mass ratio me/mμ = 4.836 331 66 (12) ×
10−3, and the electron–tau mass ratio me/mτ = 2.875 92 (26) × 10−4 [22]. Within the standard
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Fig. 5. Representative 10th-order self-energy-like diagrams. Vertex diagrams corresponding to the diagrams
of types I to V are generated by inserting an external magnetic vertex in the open fermion lines in all possible
ways. For the type VI diagrams, the external magnetic vertex must be inserted in the light-by-light-scattering
loops. This gives rise to 32 gauge-invariant sets consisting of 12 672 vertex diagrams that contribute to lepton
g − 2. Reproduced with permission from [48].

model of the elementary particles, ae can be written as

ae(theory) = ae(QED) + ae(hadron) + ae(weak). (2.1)

The renormalizability of the perturbation theory of QED guarantees that ae(QED) is described as
the power series of α

ae(QED) = a(2)
e

(α

π

)
+ a(4)

e

(α

π

)2 + a(6)
e

(α

π

)3 + a(8)
e

(α

π

)4 + · · · . (2.2)

The mass dependence of the coefficients of the perturbation series a(2n)
e , n = 1, 2, 3, . . . can be

expressed as

a(2n)
e = A(2n)

1 + A(2n)
2 (me/mμ) + A(2n)

2 (me/mτ ) + A(2n)
3 (me/mμ, me/mτ ). (2.3)
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The second-, fourth-, and sixth-order contributions were obtained analytically or as power series
expansion in me/mμ or me/mτ [7,23–30]. They are consistent with numerical calculations [31]:

A(2)
1 = 0.5 (2.4)

A(4)
1 = 197

144
+ π2

12
+ 3

4
ζ(3) − π2

2
ln 2 = −0.328 478 965 579 193 · · · (2.5)

A(4)
2 (me/mμ) = 5.197 386 67 (26) × 10−7, (2.6)

A(4)
2 (me/mτ ) = 1.837 98 (34) × 10−9, (2.7)

A(6)
1 = 83

72
π2ζ(3) − 215

24
ζ(5) − 239

2160
π4 + 139

18
ζ(3) − 298

9
π2 ln 2

+ 17 101

810
π2 + 28 259

5184
+ 100

3

{
a4 + 1

24
(ln2 2 − π2) ln2 2

}
= 1.181 241 456 · · · , (2.8)

A(6)
2 (me/mμ) = −7.373 941 55 (27) × 10−6, (2.9)

A(6)
2 (me/mτ ) = −6.5830 (11) × 10−8, (2.10)

A(6)
3 (me/mμ, me/mτ ) = 1.909 (1) × 10−13, (2.11)

where ζ(s) is the Riemann zeta function of argument s and

a4 =
∞∑

n=1

1

2nn4 = 0.517 479 061 · · · . (2.12)

The uncertainties come only from the measurement of the lepton mass ratios. There
are no three-lepton-mass-dependent contributions at the second and fourth orders, namely,
A(2)

3 (me/mμ, me/mτ ) = A(4)
3 (me/mμ, me/mτ ) = 0. The sixth-order three-lepton-mass-dependent

term A(6)
3 (me/mμ, me/mτ ) gives a contribution of O(10−21) to ae, and is completely negligible

compared with the current experimental precision 0.28 × 10−12.
The eighth- and 10th-order contributions have been obtained mostly by numerical means

(T. Aoyama et al., manuscript in preparation, and Refs. [32–48]), except for a few simple diagrams
that were evaluated analytically [49,50]. Our recent numerical evaluation of all eighth- and 10th-order
contributions is summarized as follows [48]:

A(8)
1 = −1.9106 (20), (2.13)

A(8)
2 (me/mμ) = 9.222 (66) × 10−4, (2.14)

A(8)
2 (me/mτ ) = 8.24 (12) × 10−6, (2.15)

A(8)
3 (me/mμ, me/mτ ) = 7.465 (18) × 10−7, (2.16)

A(10)
1 = 9.16 (58), (2.17)

A(10)
2 (me/mμ) = −0.003 82 (39), (2.18)

where the uncertainties are only those estimated by the numerical integration routine VEGAS [93].
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Table 1. The eighth-order QED contribution from 13 gauge-invariant groups to electron g − 2. n f shows
the number of vertex diagrams that belong to a gauge-invariant group contributing to A(8)

1 . The values with a
superscript a, b, or c are quoted from Refs. [49], [33], or [32], respectively. Other values are obtained from
evaluation of new programs. The mass dependence of A(8)

3 is A(8)
3 (me/mμ, me/mτ ).

Group n f A(8)
1 A(8)

2 (me/mμ) × 103 A(8)
2 (me/mτ ) × 105 A(8)

3 × 107

I(a) 1 0.000 876 865 · · ·a 0.000 226 456 (14) 0.000 080 233 (5) 0.000 011 994 (1)
I(b) 6 0.015 325 20 (37) 0.001 704 139 (76) 0.000 602 805 (26) 0.000 014 097 (1)
I(c) 3 0.011 130 8 (9)b 0.011 007 2 (15) 0.006 981 9 (12) 0.172 860 (21)
I(d) 15 0.049 514 8 (38) 0.002 472 5 (7) 0.087 44 (1) 0
II(a) 36 −0.420 476 (11) −0.086 446 (9) −0.045 648 (7) 0
II(b) 6 −0.027 674 89 (74) −0.039 000 3 (27) −0.030 393 7 (42) −0.458 968 (17)
II(c) 12 −0.073 445 8 (54) −0.095 097 (24) −0.071 697 (25) −1.189 69 (67)
III 150 1.417 637 (67) 0.817 92 (95) 0.6061 (12) 0
IV(a) 18 0.598 838 (19) 0.635 83 (44) 0.451 17 (69) 8.941 (17)
IV(b) 60 0.822 36 (13) 0.041 05 (93) 0.014 31 (95) 0
IV(c) 48 −1.138 52 (20) −0.1897 (64) −0.102 (11) 0
IV(d) 18 −0.990 72 (10)c −0.1778 (12) −0.0927 (13) 0
V 518 −2.1755 (20) 0 0 0

The previously published value of A(8)
1 is [33,37,38]

A(8)
1 [2007] = −1.9144 (35). (2.19)

As described in Refs. [35] and [36], we have automated computer programming of the g − 2 calcu-
lation for diagrams without a fermion loop. This system is called gencodeN. In Refs. [37] and [38],
the eighth-order contribution from the diagrams without a fermion loop, called Group V (the last
diagram of Fig. 4), was reevaluated using the fortran codes generated by gencodeN. After numerical
evaluation carried out over nearly two years, we obtained

A(8)
1 [Group V 2012] = −2.173 56 (235), (2.20)

which is consistent with the earlier result [37,38]

A(8)
1 [Group V 2007] = −2.179 16 (343). (2.21)

Since these two results are obtained by completely different programs derived from different
algorithms, they are independent of each other. Therefore, we combined them statistically, obtaining

A(8)
1 [Group V] = −2.175 50 (194). (2.22)

The eighth-order contributions from other diagrams are also slightly improved by intensive numerical
work. The value of A(8)

1 in (2.13) takes account of all these improvements. The numerical values of
each gauge-invariant group are shown in Table 1.

The 10th-order mass-independent term A(10)
1 receives a contribution from the 12 672 diagrams

shown in Fig. 5. We started the project to evaluate all 10th-order diagrams nearly ten years ago.
Thus far, the results of 31 gauge-invariant sets have been published [34,39–47]. The results for the
remaining set will be reported shortly (T. Aoyama et al., manuscript in preparation). The value (2.17)
is the preliminary result of our evaluation [48]. The contributions from all 32 gauge-invariant sets
are shown in Table 2.
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Table 2. Summary of contributions to the 10th-order lepton g − 2 from 32 gauge-invariant subsets. nF is the
number of vertex diagrams contributing to A(10)

1 . The numerical values of individual subsets were originally
obtained in the references in the fifth column. The values A(10)

1 of subsets I(d), I(f), II(a), II(b), and VI(c) in
Ref. [34] are corrected in Ref. [48].

Set nF A(10)
1 A(10)

2 (me/mμ) Reference

I(a) 1 0.000 470 94 (6) 0.000 000 28 (1) [34]
I(b) 9 0.007 010 8 (7) 0.000 001 88 (1) [34]
I(c) 9 0.023 468 (2) 0.000 002 67 (1) [34]
I(d) 6 0.003 801 7 (5) 0.000 005 46 (1) [34],[48]
I(e) 30 0.010 296 (4) 0.000 001 60 (1) [34]
I(f) 3 0.007 568 4 (20) 0.000 047 54 (1) [34],[48]
I(g) 9 0.028 569 (6) 0.000 024 45 (1) [40]
I(h) 30 0.001 696 (13) −0.000 010 14 (3) [40]
I(i) 105 0.017 47 (11) 0.000 001 67 (2) [44]
I(j) 6 0.000 397 5 (18) 0.000 002 41 (6) [39]
II(a) 24 −0.109 495 (23) −0.000 737 69 (95) [34],[48]
II(b) 108 −0.473 559 (84) −0.000 645 62 (95) [34],[48]
II(c) 36 −0.116 489 (32) −0.000 380 25 (46) [43]
II(d) 180 −0.243 00 (29) −0.000 098 17 (41) [43]
II(e) 180 −1.344 9 (10) −0.000 465 0 (40) [41]
II(f) 72 −2.433 6 (15) −0.005 868 (39) [34]
III(a) 300 2.127 33 (17) 0.007 511 (11) [45]
III(b) 450 3.327 12 (45) 0.002 794 (1) [45]
III(c) 390 4.921 (11) 0.003 70 (36) [47]
IV 2072 −7.7296 (48) −0.011 36 (7) [46]
V 6354 10.09 (57) 0 [48]
VI(a) 36 1.041 32 (19) 0.006 152 (11) [34]
VI(b) 54 1.346 99 (28) 0.001 778 9 (35) [34]
VI(c) 144 −2.5289 (28) −0.005 953 (59) [34],[48]
VI(d) 492 1.8467 (70) 0.001 276 (76) [42]
VI(e) 48 −0.4312 (7) −0.000 750 (8) [34]
VI(f) 180 0.7703 (22) 0.000 033 (7) [34]
VI(g) 480 −1.5904 (63) −0.000 497 (29) [42]
VI(h) 630 0.1792 (39) 0.000 045 (9) [42]
VI(i) 60 −0.0438 (12) −0.000 326 (1) [34]
VI(j) 54 −0.2288 (18) −0.000 127 (13) [34]
VI(k) 120 0.6802 (38) 0.000 015 6 (40) [34]

Until the value (2.17) becomes available, the educated-guess value proposed in Ref. [51],

A(10)
1 = 0.0 (4.6), (2.23)

was widely used. Its uncertainty, 4.6, was obtained by extrapolating the absolute values of the mass-
independent results A(6)

1 and A(8)
1 of (2.8) and (2.19), respectively, to the 10th order.

The muon loop effect (2.18) of the 10th-order term A(10)
2 (me/mμ) gives a contribution ofO(10−16)

to ae and is negligible compared with the experimental precision. The tau-lepton loop effect at the
10th order is estimated to be at least a factor of 10 smaller than the muon loop effect. Thus, we
currently ignore A(10)

2 (me/mτ ) and A(10)
3 (me/mμ, me/mτ ).

In view of the precision of the Harvard experiment (1.4), the hadronic and weak contributions to
the electron g − 2 are no longer negligible. The hadronic vacuum-polarization (had. v.p.) effect has
been calculated as [52]

ae(had. v.p.) = 1.866(12) × 10−12 − 0.2234(14) × 10−12, (2.24)

where the first and second terms are the leading-order and next-to-leading-order contributions
from the hadronic vacuum-polarization, respectively. The values in (2.24) are consistent with those
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obtained from the vaccum-polarization contribution to the muon g − 2 [53–55], multiplying the
factor (me/mμ)2.

The contribution from hadronic light-by-light (had. l-l) scattering has been calculated for the
electron g − 2 [56]

ae(had. l-l) = 0.035 (10) × 10−12. (2.25)

The weak contribution is also calculated for the muon g − 2 and its effect on the electron g − 2 is
obtained by scaling it down to the electron [57–60]:

ae(weak) = 0.0297 (5) × 10−12. (2.26)

In order to determine the theoretical prediction of ae, we need the value of the fine-structure con-
stant α, which cannot be determined by QED theory itself. One of the best values of α became
available at the beginning of the year 2011 from the atom beam experiment. The precise value of
the ratio between the Planck constant and the mass of the Rb atom (h/mRb) was obtained by using
the optical lattice technique [61]. Together with the precisely known Rydberg constant R∞ and the
electron–Rb mass ratio me/mRb, the inverse of the fine-structure constant is obtained as [22]

α−1(Rb) = 137.035 999 049 (90). (2.27)

Substituting α−1(Rb) of (2.27) into the perturbation series (2.2) together with the hadronic and
weak corrections, we obtain the theoretical prediction of ae

ae(theory) = 1 159 652 181.78 (0.06)(0.04)(0.02)(0.77)[0.77] × 10−12, (2.28)

where the uncertainties from left to right are due to the numerical calculation (2.13) of the eighth-
order term A(8)

1 , (2.17) of the 10th-order term A(10)
1 , the hadronic and electroweak corrections, and

the fine-structure constant α−1(Rb). The last value within the brackets is their statistical combination.
The uncertainty due to the fermion mass ratio is O(10−16). The agreement between the theory (2.28)
and the experiment (1.4) is satisfactory:

ae(HV08) − ae(theory) = (−1.05 ± 0.82) × 10−12. (2.29)

As seen from (2.28), the uncertainty due to the fine-structure constant α−1(Rb) in (2.27) dominates
over those due to other sources. This implies that we can obtain a value of the fine-structure constant
better than the Rb-atom measurement assuming that the QED theory is valid. Equating the theory
(2.1) and the measured value (1.4) and solving for the fine-structure constant, we obtain

α−1(ae) = 137.035 999 1727 (68)(46)(19)(331)[342], (2.30)

where the uncertainties are due to the eighth-order term (2.13), the 10th-order term (2.17), the
hadronic correction, the experiment (1.4), and their combination. The difference between the values
of α−1 of (2.27) and (2.30) is

α−1(Rb) − α−1(ae) = (−124 ± 97) × 10−9. (2.31)

It is interesting to see what will happen to the difference when the precision of both α values is further
improved.
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3. Theory of the muon g − 2

The anomalous magnetic moment is a dimensionless constant. Thus the mass-independent terms
A(2n)

1 , n = 1, 2, . . . are common for all species of leptons. The term that makes aμ distinguishable
from ae is the mass-dependent term, particularly the electron-loop contribution to aμ that gives rise
to the logarithmic enhancement factor ln(mμ/me). There are two sources of ln(mμ/me). One is the
threshold singularity of vacuum-polarization diagrams. This term can be analytically traced using
the renormalization group technique [62–68]. Another source is a diagram involving a light-by-light
(l-l) scattering loop attached to the external magnetic field. This diagram first appears in the sixth-
order perturbation theory. The early work on this l-l diagram by numerical means revealed that the
l-l diagram produces the logarithmic factor ln(mμ/me) [69,70]. The mechanism of the origin of this
logarithm was later clarified by the observation that the electron in the l-l loop and the external muon
nearly form a Coulombic bound state [71,72].

The contributions up to the sixth order have been obtained analytically and double-checked by
numerical calculations. The uncertainties of these terms are due to the measurement of the mass
ratio of leptons only:

A(4)
2 (mμ/me) = 1.094 258 312 0 (83), (3.1)

A(4)
2 (mμ/mτ ) = 0.780 79 (15) × 10−4, (3.2)

A(6)
2 (mμ/me) = 22.868 380 04 (23), (3.3)

A(6)
2 (mμ/mτ ) = 0.360 70 (13) × 10−3, (3.4)

A(6)
3 (mμ/me, mμ/mτ ) = 0.527 76 (11) × 10−3, (3.5)

where A2 and A3 of fourth and sixth order have been evaluated by numerical integration, analytic
integration, asymptotic expansion in mμ/me, or power series expansion in mμ/mτ [28–30,73–75].
Note that A(4)

3 = 0.
Recent evaluation of the eighth- and 10th-order contributions gives [76,77]

A(8)
2 (mμ/me) = 132.6852 (60), (3.6)

A(8)
2 (mμ/mτ ) = 0.042 34 (12), (3.7)

A(8)
3 (mμ/me, mμ/mτ ) = 0.062 715 (36), (3.8)

A(10)
2 (mμ/me) = 742.18 (87), (3.9)

A(10)
2 (mμ/mτ ) = −0.0681 (52), (3.10)

A(10)
3 (mμ/me, mμ/mτ ) = 2.011 (10). (3.11)

The uncertainties of these terms are those generated by VEGAS. Some of the diagrams have been
analytically evaluated [50,78,79] and they are consistent with the results obtained by numerical calcu-
lations. The numerical values of individual eighth- and 10th-order gauge-invariant groups are shown
in Table 3 and Table 4, respectively.

The previously published values [76] of A(8)
2 (mμ/me) and A(8)

3 (mμ/me, mμ/mτ ) are

A(8)
2 (mμ/me)[2006] = 132.6823(72), (3.12)

A(8)
3 (mμ/me, mμ/mτ )[2006] = 0.0376(1). (3.13)
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Table 3. The eighth-order mass-dependent QED contribution from 12 gauge-invariant groups to muon g − 2,
whose representatives are shown in Fig. 4. The mass dependence of A(8)

3 is A(8)
3 (mμ/me, mμ/mτ ).

Group A(8)
2 (mμ/me) A(8)

2 (mμ/mτ ) A(8)
3

I(a) 7.745 47 (42) 0.000 032 (0) 0.003 209 (0)
I(b) 7.582 01 (71) 0.000 252 (0) 0.002 611 (0)
I(c) 1.624 307 (40) 0.000 737 (0) 0.001 807 (0)
I(d) −0.229 82 (37) 0.000 368 (0) 0.000 000 (0)
II(a) −2.778 88 (38) −0.007 329 (1) 0.000 000 (0)
II(b) −4.552 77 (30) −0.002 036 (0) −0.009 008 (1)
II(c) −9.341 80 (83) −0.005 246 (1) −0.019 642 (2)
III 10.7934 (27) 0.045 04 (14) 0
IV(a) 123.785 51 (44) 0.038 513 (11) 0.083 739 (36)
IV(b) −0.4170 (37) 0.006 106 (31) 0
IV(c) 2.9072 (44) −0.018 23 (11) 0
IV(d) −4.432 43 (58) −0.015 868 (37) 0

Table 4. Tenth-order mass-dependent contribution to the muon g − 2 from 31 gauge-invariant subsets shown
in Fig. 5. The mass dependence of A(10)

3 is A(10)
3 (mμ/me, mμ/mτ ).

Set A(10)
2 (mμ/me) A(10)

2 (mμ/mτ ) A(10)
3

I(a) 22.566 973 (3) 0.000 038 (0) 0.017 312 (1)
I(b) 30.667 091 (3) 0.000 269 (0) 0.020 179 (1)
I(c) 5.141 395 (1) 0.000 397 (0) 0.002 330 (0)
I(d) 8.8921 (11) 0.000 388 (0) 0.024 487 (2)
I(e) −0.9312 (24) 0.000 232 (0) 0.002 370 (0)
I(f) 3.685 049 (90) 0.002 162 (0) 0.023 390 (2)
I(g) 2.607 87 (72) 0.001 698 (0) 0.002 729 (1)
I(h) −0.5686 (11) 0.000 163 (1) 0.001 976 (3)
I(i) 0.0871 (59) 0.000 024 (0) 0
I(j) −1.263 72 (14) 0.000 168 (1) 0.000 110 (5)
II(a) −70.4717 (38) −0.018 882 (8) −0.290 853 (85)
II(b) −34.7715 (26) −0.035 615 (20) −0.127 369 (60)
II(c) −5.385 75 (99) −0.016 348 (14) −0.040 800 (51)
II(d) 0.4972 (65) −0.007 673 (14) 0
II(e) 3.265 (12) −0.038 06 (13) 0
II(f) −77.465 (12) −0.267 23 (73) −0.502 95 (68)
III(a) 109.116 (33) 0.283 000 (32) 0.891 40 (44)
III(b) 11.9367 (45) 0.143 600 (10) 0
III(c) 7.37 (15) 0.1999 (28) 0
IV −38.79 (17) −0.4357 (25) 0
VI(a) 629.141 (12) 0.246 10 (18) 2.3590 (18)
VI(b) 181.1285 (51) 0.096 522 (93) 0.194 76 (26)
VI(c) −36.58 (12) −0.2601 (28) −0.5018 (89)
VI(d) −7.92 (60) 0.0818 (17) 0
VI(e) −4.32 (14) −0.035 94 (32) −0.1122 (24)
VI(f) −38.16 (15) 0.043 47 (85) 0.0659 (31)
VI(g) 6.96 (48) −0.044 51 (96) 0
VI(h) −8.55 (23) 0.004 85 (46) 0
VI(i) −27.34 (12) −0.003 45 (33) −0.0027 (11)
VI(j) −25.505 (20) −0.011 49 (33) −0.016 03 (58)
VI(k) 97.123 (62) 0.002 17 (16) 0

The new calculation of A(8)
2 (mμ/me) using the automatically generated fortran codes is in good

agreement with the result of the old calculation (3.12). Thus we combined the two results statistically
and obtained the value given in (3.6). Unfortunately, the results (3.8) and (3.13) of the three-mass
term A(8)

3 (mμ/me, mμ/mτ ) are very different from each other. We found that, in the old calculation
(3.13), some of the integrals lack a symmetric factor 2 required to account for the exchange of the
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electron loop and the tau-lepton loop. The value (3.13) is thus incorrect and must be replaced by
(3.8). The contributions from individual gauge-invariant groups are shown in Table 3.

The 10th-order term A(10)
2 (mμ/me) is the sum of the results of 31 of 32 gauge-invariant subsets

shown in Fig. 5. The exception is Set V, which does not contribute to the mass-dependent term A(10)
2 .

The mass-dependent contributions of individual subsets can be found in Refs. [34,39–47], and are
summarized in Table 4.

Note that (3.9) is about 4 standard uncertainties larger than the previous estimate 663(20) [34].
This is mainly because we had underestimated the magnitude of the contribution of Set III(a).

Using the α−1(Rb) of (2.27) and the latest values of the fermion mass ratios [22], we obtain the
QED contribution to aμ

aμ(QED) = 116 584 718.951 (0.019)(0.007)(0.009)(0.077) [0.080] × 10−11, (3.14)

where the uncertainties are due to the eighth-order term, the 10th-order term, the mass ratio mτ /mμ,
α, and their statistical combination, respectively.

At present, aμ(hadron) is the largest source of theoretical uncertainty. The uncertainty comes
mostly from the hadronic vacuum-polarization term, which is calculable from the experimental
information. Three types of measurements are available for this purpose:

1. e+e− → hadrons,
2. e+e− → γ + hadrons,
3. τ± → ν + π± + π0.

These processes have been closely investigated by many groups [53–55,80,81]. The ee-based analysis
[53–55,81] uses both experiments 1 and 2, while the τ -based analysis [54,55] relies on experiment 3
only. The ee-based results obtained by several groups are consistent with each other. Meanwhile, the
τ -based result was considerably different from the ee-based results. The recent τ -based result [54]
is, however, very close to the ee-based results.

We list here one of those based on the ee analysis [53]:

aμ(had. v.p.) = 6949.1 (37.2)exp (21.0)rad × 10−11. (3.15)

The higher-order (ho) hadronic vacuum-polarization contribution is also known [53]:

aμ(had. v.p. ho) = −98.4(0.6)exp(0.4)rad × 10−11. (3.16)

The hadronic light-by-light scattering contribution is a similar size to aμ(had. v.p. ho), but has a
much larger theoretical uncertainty [82–85]:

aμ(had. l-l) = 116 (40) × 10−11. (3.17)

The weak contribution has been calculated up to the 2-loop order [58–60]:

aμ(weak) = 154 (2) × 10−11. (3.18)

Since this uncertainty is 30 times smaller than the experimental precision of (1.6), it can be regarded
as being known accurately.

Adding up all QED, hadronic, and weak contributions, the standard-model prediction of the muon
g − 2 is

aμ(theory) = 116 591 840 (59)(2) [59] × 10−11, (3.19)

where the uncertainties are, from left to right, from the hadronic and weak contributions, and a com-
bination of the two. The uncertainty due to QED is negligible. The difference between the experiment
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(1.6) and the theory (3.19) is

aμ(BNL08) − aμ(theory) = (249 ± 87) × 10−11. (3.20)

The difference is 2.9 times larger than the standard uncertainty.

4. Formulation of the ae calculation

In this section, we give a general formalism to calculate the electron g − 2 contribution in the QED
perturbation theory. We work out the Feynman–Dyson rule directly in Feynman parametric space.
The Feynman parametric integral formalism was first described in Ref. [86] and the details of it are
also explained in Ref. [87]. This formalism is also used for our automation code gencodeN [35]. We
here quote the discussion from Ref. [35].

4.1. Definition of ae amplitude

The magnetic property of a lepton can be studied through examining its scattering by a static mag-
netic field. The amplitude of this process including interactions with the virtual photon fields can be
represented as follows, by taking account of the gauge symmetry, invariance under Lorentz, C, P, and
T transformations:

eū(p′′)
[
γ μ F1(q

2) + i

2m
σμν qν F2(q

2)

]
u(p′) Ae

μ(�q), (4.1)

where p′ = p − q/2, p′′ = p + q/2, q = p′′ − p′ and σμν = i
2(γ μγ ν − γ νγ μ). Ae

μ is the vector
potential of the external static magnetic field. F1 and F2 are called the charge and magnetic form
factors, respectively. The charge form factor is normalized so that F1(0) = 1.

The anomalous magnetic moment ae is the static limit of the magnetic form factor F2(q2), and it
is expressed as

ae = F2(0) = Z2 M (4.2)

with

M = lim
q2→0

Tr(Pν(p, q) 	ν), (4.3)

where Z2 is the wavefunction renormalization constant, 	ν is the proper vertex function with the
external electrons on the mass shell, and Pν(p, q) is the magnetic projection operator,

Pν(p, q) = 1

4(p2)2 q2

(
/p − 1

2
/q + m

)[
mγ ν p2 −

(
m2 + 1

2
q2
)

pν

](
/p + 1

2
/q + m

)
. (4.4)

Here, the momentum of incoming lepton p − 1
2q and that of outgoing lepton p + 1

2q are on the mass
shell so that p and q satisfy p2 = m2 − 1

4q2 and p · q = 0. The magnetic moment amplitude from a
vertex diagram can be extracted by using the projection operator Pν(p, q).

4.2. Construction of the Feynman parametric integral

Usually, the QED amplitude of the perturbation theory is expressed as an integral of loop momenta
flowing through the Feynman diagram. One of the ways to carry out the loop integral is to convert it
into an integral of Feynman parameters zi assigned to internal lines [70,86].

We consider a 2nth-order lepton vertex diagram G, which describes the scattering of an incoming
lepton with momentum p − q/2 into an outgoing lepton with momentum p + q/2 by an external
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magnetic field. G consists of 2n + 1 interaction vertices connected by 2n lepton propagators and n
photon propagators, which are given in the form (in Feynman gauge):

i
/pi + mi

p2
i − m2

i

,
−igμν

p2
i − m2

i

, (4.5)

respectively. The momentum pi may be decomposed as pi = ki + qi , in which ki is a linear com-
bination of loop momenta, while qi is a linear combination of external momenta. mi is the mass
associated with the line i , which are temporarily distinguished from each other. Of course, mi = 0
for photons, but it is useful to give a small positive value in the intermediate steps to deal with the
IR divergence, and take the limit mi = 0 only at the end.

We introduce an operator Dμ
i by [88]

Dμ
i ≡ 1

2

∫ ∞

m2
i

dm2
i

∂

∂qiμ
(4.6)

and replace each numerator /pi = /ki + /qi of lepton propagators (4.5) by /Di . Since Dμ
i does not depend

on ki explicitly, the numerators can be pulled out in front of the momentum integration as far as the
integrand is adequately regularized.

The product of denominators is combined into one using the formula
N∏

i=1

1

χi
= (N − 1)!

[
N∏

i=1

∫ 1

0
dzi

]
δ

(
1 −

N∑
i=1

zi

)
1(∑N

i=1 ziχi

)N
. (4.7)

The sum
∑

i ziχi is a quadratic form of loop momenta so that it can be diagonalized and integrated
analytically with respect to the loop momenta. As a consequence, the amplitude is converted into an
integral over Feynman parameters zi , which is expressed in a concise form as

	ν
G =

(
−1

4

)n

(n − 1)! F
ν

∫
(dz)G

1

U 2V n
, (4.8)

where N = 3n and

(dz)G =
N∏

i=1

dzi δ

(
1 −

N∑
i=1

zi

)
, (4.9)

V =
N∑

i=1

zi (m
2
i − qi · Q′

i ), (4.10)

Q′ μ
i = − 1

U

N∑
j=1

qμ
j z j B ′

i j , (4.11)

B ′
i j = Bi j − δi j

U

z j
. (4.12)

In Eq. (4.8) we have omitted the factor (α/π)n for simplicity. U and Bi j are homogeneous polyno-
mials of degree n and n − 1 in Feynman parameters {zi }, respectively, and are determined by the
topology of a given diagram. Their precise definitions are given in Sect. 4.3. The operator F

ν is of
the form

F
ν = γ α1( /D1 + m1)γ

α2 . . . γ ν . . . γ α2n−1( /D2n + m2n)γ
α2n

n∏
k=1

gαik α jk
, (4.13)

where
∏

k gαik α jk
is a diagram-specific product. If G has closed lepton loops, F

ν also contains
appropriate trace operations.
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Fig. 6. A vertex diagram with given external momenta. A choice of paths P ′ and P ′′ is shown.

Note that F
ν can now be brought into the z-integral. The operator Dμ

i in F
ν acts on 1/V n as

Dμ
i

1

V n
= Q′ μ

i

V n
, (4.14)

Dμ
i Dν

j
1

V n
=

Q′ μ
i Q′ ν

j

V n
− 1

2(n − 1)

gμν B ′
i j

U V n−1 , (4.15)

Dμ
i Dν

j Dρ
k

1

V n
=

Q′ μ
i Q′ ν

j Q′ ρ
k

V n

− 1

2(n − 1)
(gμν B ′

i j Q′ ρ
k + gνρ B ′

jk Q′ μ
i + gρμB ′

ki Q′ ν
j )

1

U V n−1 , (4.16)

. . . .

The result of this operation may be summarized as a set of rules for a string of operators Dμ
i :

a) when /Di and /D j are “contracted”, they are turned into a pair of γ μ and γμ times a factor (−1
2 B ′

i j ).
b) uncontracted Di is replaced by Q′

i .

As a consequence the action of F
ν produces a series of terms of the form

F
ν 1

U 2V n
= Fν

0

U 2V n
+ Fν

1

U 3V n−1 + · · · , (4.17)

where Fν
k are polynomials of B ′

i j and Q′
i . The subscript k denotes the number of contractions. Fν

k

also includes an overall factor 1
(n−1)(n−2)···(n−k)

.
All these procedures are summarized in our homemade integration table, which converts the

momentum expression of the QED amplitude to the Feynman parameter expression.
It is convenient to replace vectors Q′ μ

i by scalar functions. Suppose the momentum pμ − qμ

2 enters

the graph G at point A, follows the path P ′ = P(AC), and leaves at C ; and pμ + qμ

2 enters at C ,
follows the path P ′′ = P(C B), and leaves at B (Fig. 6.) This can be expressed concisely by

qμ
j = η jP ′

(
pμ − qμ

2

)
+ η jP ′′

(
pμ + qμ

2

)
, (4.18)

where η jP ′ = (1, −1, 0) according to whether the line j lies (along, against, outside of) the path P ′.
It is similar for η jP ′′ . Substituting Eq. (4.18) in Eq. (4.11) we obtain

Q′μ
i = AP ′

i

(
pμ − qμ

2

)
+ AP ′′

i

(
pμ + qμ

2

)
, (4.19)

where

AP ′
i = − 1

U

N∑
j=1

η jP ′z j B ′
j i . (4.20)
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Fig. 7. A diagram (left) and the chain diagram derived from it (right).

It is similar for AP ′′
i . AP ′

i and AP ′′
i will be called scalar currents associated with pμ − qμ

2 and pμ +
qμ

2 , respectively.
If we choose a path P = P(AB) for pμ, the corresponding scalar current becomes AP

i = AP ′
i +

AP ′′
i . Note that the choice of P(AB) is flexible as far as the end points A, B are fixed. Note also that

P(AB) no longer depends on C .

4.3. Building blocks: Bi j and U

In our formalism, the parametric functions Bαβ and U provide the basic building blocks, which are
defined on the chain diagram corresponding to the diagram G. Here α, β refer to the chains; a chain
is a set of internal lines that carry the same loop momentum. The chain diagram is derived from G by
amputating all the external lines and disregarding the distinction between the types of lines. Every
chain is assumed to be properly directed. Bαβ and U are homogeneous polynomials of degree n − 1
and n, respectively, in zα, . . .. They are the quantities that reflect the topological structure underlying
the diagram G.

Bαβ and U can be obtained recursively by the following relations:

Bαβ =
∑

c

ξα,c ξβ,c UG/c, (4.21)

ξλ,sU =
∑
α

ξα,s zα Bλα, for any λ ∈ s, (4.22)

starting from U = zα for a single loop. Here the summation over c runs over all self-nonintersecting
closed loops on G. The loop matrix ξα,c is a projector of chain α to loop c, which takes the value
(1, −1, 0) according to whether α is (along, against, outside of) c. UG/c is the U function for the
reduced diagram G/c that is obtained from G by shrinking the loop c to a point. The loop s in
Eq. (4.22) is an arbitrary closed loop.

Alternate and equivalent formulae for Bαβ and U are obtained in the following manner. Suppose
a set of independent self-nonintersecting loops (called a fundamental set of circuits) is given and
define Ust by the summation over all chains by

Ust =
∑
α

zα ξα,s ξα,t , (4.23)

where s, t are labels of circuits in the set. Then, U and Bαβ are given by

U = det
st

Ust , (4.24)

Bαβ = U
∑

st

ξα,s ξβ,t (U−1)st . (4.25)

For a given diagram G, first we have to identify the fundamental set of circuits, and construct the
loop matrix ξα,s . Then we can obtain U and Bαβ according to the formulae above.
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Bi j of the lines i, j is identical to ηi,αη j,β Bαβ , whose indices are such that i ∈ α and j ∈ β. The
ηi,α takes the value 1 (−1) if the direction of the line i is parallel (anti-parallel) to the direction of
the chain α. Bi j satisfies a so-called junction law on each vertex if the diagram G were regarded as
an electric circuit in which the Feynman parameter zi corresponds to the resistance of the line i :∑

i

εvi Bi j = 0 (4.26)

for any vertex v and any internal line j , where εvi is called an incident matrix, defined by

εvi =

⎧⎪⎪⎨⎪⎪⎩
1 if the line i enters the vertex v,

−1 if the line i leaves the vertex v,

0 otherwise.

(4.27)

Bi j also satisfies a loop-law given by the following relation for arbitrary closed loop s and arbitrary
line j : ∑

i

ξi,s zi B ′
j i = 0, (4.28)

where ξi,s = ηi,αξα,s for i ∈ α.
These relations reduce the number of independent elements among Bi j . They also provide

consistency checks, which are useful in the actual calculations.

4.4. A set of vertex diagrams summed by the Ward–Takahashi identity

A set of vertex diagrams that are derived from a self-energy diagram by inserting an external vertex
in every lepton propagator share many properties. Actually, we can go even further to relate those
integrals to a single integral of the self-energy-like diagram through the Ward–Takahashi identity.
This relation is useful when we consider higher-order calculations, because it substantially reduces
the number of independent integrals.

It is well known that the proper vertex 	μ = γ μ + �μ and self-energy part � are related by the
Ward–Takahashi identity

qμ�μ = −�

(
p + 1

2
q

)
+ �

(
p − 1

2
q

)
. (4.29)

This relation also holds perturbatively for �G , representing the lepton self-energy diagram G and the
sum of vertex diagrams �G that are obtained by inserting an external vertex into G in every possible
way. Differentiating both sides of Eq. (4.29) with respect to qμ and taking the static limit q → 0 of
the external magnetic field, we have

�ν(p, q) 	 −qμ

[
∂�μ(p, q)

∂qν

]
q=0

− ∂�(p)

∂pν

. (4.30)

We may evaluate ae starting from either side of this expression; a straightforward way is to calculate
each vertex diagram individually and to gather them up according to the left-hand side, or else we
can combine the set of vertices into one according to the right-hand side. For simple diagrams we
evaluated the contribution to ae by using both approaches. However, for complex diagrams with four
or more photon corrections, we used the latter approach only.
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In the Feynman parametric form, the 2nth-order magnetic moment corresponding to the right-hand
side of Eq. (4.30) can be written as [89]

M (2n)
G =

(−1

4

)n

(n − 1)!
∫

(dz)G
[

E + C

n − 1

1

U 2V n−1 + (N + Z)
1

U 2V n

]
, (4.31)

where E, C, N, and Z are a set of operators defined as

N = 1

4
Tr[Pν

1 pν(2GF)], (4.32)

E = 1

4
Tr[Pν

1 Eν], (4.33)

C = 1

4
Tr[Pμν

2 Cμν], (4.34)

Z = 1

4
Tr[Pμν

2 Zμν]. (4.35)

The magnetic projectors Pν
1 and Pμν

2 are derived from Eq. (4.4) by averaging over the direction of
qμ, and take the following forms:

Pν
1 = 1

3
γ ν −

(
1 + 4

3

/p

m

)
pν

m
, (4.36)

Pμν
2 = 1

3

(
1 + /p

m

)(
gμν − γ μγ ν + pμ

m
γ ν − pν

m
γ μ

)
. (4.37)

The operator F in (4.32) is the numerator part of the self-energy-like diagram G constructed with
a similar form to Eq. (4.13):

F = γ α1( /D1 + m1)γ
α2 . . . γ α2n−1( /D2n−1 + m2n−1)γ

α2n

n∏
k=1

gαik α jk
, (4.38)

which may contain appropriate trace operations if G has closed lepton loops. The operator E
ν is

defined by

E
ν = ∂ F

∂pν

=
∑

all leptons

AiF
ν
i , (4.39)

in which F
ν
i is obtained from F by substituting in the i th line:

( /Di + mi ) → γ ν. (4.40)

The operator Z
μν is defined by

Z
μν =

∑
j

z jZ
μν
j . (4.41)

The sum runs only over the lepton lines into which the external photon line is inserted. Zμν
j is obtained

from F by substituting in the j th line:

( /D j + m j ) → 1

2
[γ μγ ν( /D j + m j ) − ( /D j + m j )γ

νγ μ]. (4.42)

The operator C
μν is defined by

C
μν =

∑
i< j

Ci jF
μν
i j , (4.43)
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where i and j refer to all lepton lines. Ci j is defined by

Ci j = 1

U 2

∑
k<l

zk zl(B ′
ik B ′

jl − B ′
il B ′

jk), (4.44)

where the sums over k, l are taken for the lepton lines that belong to the path on which the momentum
qν of the external magnetic field flows. Fμν

i j is obtained from F by substituting in the i th and j th lepton
lines:

( /Di + mi ), ( /D j + m j ) → γ μ, γ ν. (4.45)

G is given by

G =
∑

i

zi Ai , (4.46)

where the summation runs over the lepton lines on which the external momentum pμ flows
(depending on the choice of path P(AB) for the scalar currents).

5. Subtractive UV renormalization procedure

The treatment of UV and IR divergences in the Feynman parametric formalism was originally
described in Ref. [90]. It turns out that the UV treatment in Ref. [90] can be easily translated to
the automation algorithm of Ref. [35] and implemented in gencodeN.

5.1. General remarks on UV divergence

The amplitude constructed in the previous section is divergent in general. The divergences must be
eliminated before carrying out numerical integration. The UV divergence arises when one or more
loop momenta go to infinity. This is seen in Feynman parameter space as all parameters zi that belong
to loops of a subdiagram go to zero simultaneously. This allows power-counting rules for identifying
the emergence of divergences in a manner similar to ordinary momentum integration.

We adopt here the subtractive on-shell renormalization. The renormalization constants that appear
in QED are the mass renormalization constant δm, the wavefunction renormalization constant B, and
the vertex renormalization constant L . They are determined on the mass shell, and thus the coupling
constant e and the mass of the lepton m are guaranteed to be the physical ones.

To perform renormalization numerically one must prepare the subtraction term as an integral over
the same domain of integration as the original unrenormalized amplitude, and to perform point-wise
subtraction in which singularities of the original integrand are canceled point-by-point on the param-
eter space before the integration is carried out. To achieve this, the renormalization constant Lm and
the lower-order g − 2 term Mn−m must both be expressed in the parametric integral and combined
by the Feynman integral formula. It is found, however, that the integral is not easily manageable if
Lm is treated as a whole. Instead, we adopt the following intermediate renormalization scheme, in
which Lm is split as

Lm = LUV
m + L̃m, (5.1)

and only the UV-divergent part LUV
m is subtracted.

The subtraction term LUV
m Mn−m is found to have a term-by-term correspondence with the UV-

divergent term of the original integral Mn , and thus cancels the UV singularities. It is identified from
the original integrand by simple power-counting rules. This procedure is formulated as K-operation.
The treatment of the UV divergence of the self-energy subdiagram is slightly more complicated; see
Refs. [89] and [87] and Eq. (5.37) for details.
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The UV-finite part of the renormalization constant is treated separately together with similar
terms from other diagrams. This step is called the residual renormalization, examples of which are
discussed in Sect. 7.

In this section we shall describe how to construct the intermediate renormalization term via K-
operation. It is shown that the subtraction term factorizes exactly into the UV-divergent part of the
mth-order renormalization constant and Mn−m by construction. This feature is crucial for the sub-
sequent operation when the UV divergence arises from more than one divergent subdiagram. The
factorization property is also significant for the residual renormalization step in the sense that the
highest order of the residual part decreases by two, e.g., for the 10th-order diagrams it is suffi-
cient to consider at most eighth-order terms. Therefore the evaluation of the residual part reduces to
lower-order integrals.

5.2. UV-divergent subdiagram

The UV divergence associated with the subdiagram S is caused by the simultaneous limits ki →
∞ of all loop momenta ki , i ∈ S. In the parametric representation (4.31) this is translated into the
vanishing of the denominator U at a boundary of Feynman parameter space where1

zi =
{
O(ε) i ∈ S,

O(1) otherwise,
(5.2)

with ε → 0.
To find how UV divergence arises from a subdiagram S consisting of NS internal lines and nS

loops, consider the integration domain (5.2). In the limit ε → 0, the homogeneous polynomials in
the integrand behave as follows (see Sect. 5.4 for proofs):

U = O(εnS ), V = O(1), (5.3)

and

Bi j =
{
O(εnS−1) if i, j ∈ S,

O(εnS ) otherwise.
(5.4)

Let mS be the maximum number of contractions of operator Di within S. Simple power-counting
shows that the m-contracted term of M (2n) in Eq. (4.31) is divergent if and only if

NS − 2nS ≤ min(m, mS), (5.5)

where min(m, mS) means the lesser of m and mS . If S is a vertex part, we have NS = 3nS and
mS = nS . IfS is a self-energy part, we have NS = 3nS − 1 and mS = nS − 1. In both cases Eq. (5.5)
is satisfied only for m ≥ mS . Let us denote the UV limit (5.2) of U and Bi j as [U ]S

UV and [Bi j ]S
UV.

5.3. K-operation

We are now ready to set up the rules of K-operation for constructing the intermediate renormalization
term. Let G/S denote a residual diagram that is obtained from G by shrinking a subdiagram S to a
point.

1 The overall divergence of a self-energy-like diagram drops automatically after projecting out the magnetic
moment contribution.

19/36

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2012/1/01A107/1569493 by guest on 19 April 2024



PTEP 2012, 01A107 T. Aoyama et al.

Fig. 8. A closed loop c running in G. Reproduced with permission from [35].

The K-operation KS is defined as follows.

1. In Eq. (4.31), collect all terms that are maximally contracted within the subdiagram S.
2. Replace U , Bi j , Ci j , and Ai appearing in the integrand with their UV limits, [U ]SUV, [Bi j ]SUV,

[Ci j ]SUV, and [Ai ]SUV, respectively.
3. Replace V with VS + VG/S , where VS and VG/S are V functions of S and G/S, respectively.
4. Attach an overall minus sign.

A naive UV limit gives V → VG/S instead of step (3). Since VS is a higher-order term in ε, its
addition in step (3) does not affect the UV limit. But it is crucial because it enables us to satisfy
the exact factorization of the renormalization constant and the rest of the amplitude required by the
standard renormalization [90]. Furthermore, it enables us to avoid the spurious IR divergence that
VG/S alone might develop in other parts of the integration domain.

5.4. UV limit of building blocks U , Bi j , and Ci j

Let us now describe step by step how the building blocks of the integrand behave in the UV limit
(5.2). It is found that each of them factorizes into two parts, one of which depends solely on the
subdiagram S, and the other on the residual diagram G/S alone.

The U function is a homogeneous polynomial of Feynman parameters of degree n defined by
Eq. (4.24), which has a simple behavior in the limit (5.2) [91]

[U ]SUV = US UG/S (= O(εnS )). (5.6)

In order to obtain the UV limit of Bi j , let us note that for i ∈ α, j ∈ β, Bαβ of Eq. (4.21) can be
written as

Bi j =
∑

c

ξi,c ξ j,c UG/c. (5.7)

Since (G/c) ∩ S = S/(c ∩ S) and (G/c)/S = G/(c ∪ S), the UV limit of UG/c becomes

[UG/c]SUV = US/(c∩S) UG/(c∪S). (5.8)

The explicit form depends on how loop c runs in G:

Case (a) c is contained in S (i.e. c ⊆ S); see Fig. 8 (a).
In this case S/(c ∩ S) = S/c and G/(c ∪ S) = G/S. Therefore

[UG/c]SUV = US/c UG/S (= O(εnS−1)). (5.9)

The power of ε decreases by 1 since S/c has one less loop than S.
Case (b) c runs outside of S (i.e. c ⊆ (G − S)). Here, G − S denotes a diagram obtained from G

by eliminating all lines that belong to S; see Fig. 8 (b).
In this case S/(c ∩ S) = S and G/(c ∪ S) = (G/S)/c. Therefore

[UG/c]SUV = US U(G/S)/c (= O(εnS )). (5.10)
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Case (c) c is contained in both S and G − S (i.e. c ∩ S �= ∅ and c ∩ (G − S) �= ∅); see Fig. 8 (c).
In this case c ∩ S is an open self-nonintersecting path within S. It does not change
the number of loops in S when the path is shrunken to a point. Therefore the scaling
behavior is

[UG/c]SUV = O(εnS ), (5.11)

though exact factorization does not occur.

From these observations and Eq. (5.7), we find the following behavior of Bi j in the UV limit.

I) Bi j for i, j ∈ S.
The closed loops appearing in the sum in Eq. (5.7) fall into either of the cases (a) or (c); the
former gives the leading contribution whereas the latter does not in the limit (5.2). Thus we
have

[Bi j ]
S
UV =

∑
c′⊆S

ξi,c′ ξ j,c′ US/c′ UG/S

= BS
i j UG/S, (5.12)

where the superscript S denotes that BS
i j is defined for the subdiagram S.

II) Bi j for i, j ∈ G/S.
The closed loops appearing in the sum in (5.7) fall into either of the cases (b) or (c), both of
which give the same order of contributions:

[Bi j ]
S
UV =

∑
c′ in case (b)

ξi,c′ ξ j,c′ UG/c′ +
∑

c′′ in case (c)

ξi,c′′ ξ j,c′′ UG/c′′ . (5.13)

In the first term on the right-hand side, the sum over the closed loops c′ ⊆ (G − S) is equiv-
alent to the sum over loops in G/S − {s}, namely the loops in the residual diagram G/S that
does not pass through point s, where s denotes a point into which the subdiagramS has shrunk.
Therefore, the first term becomes

US =
∑

c′⊆(G/S−{s})
ξi,c′ ξ j,c′ U(G/S)/c′ . (5.14)

In the second term, the closed loop c′′ passing through points A, B ∈ S ∩ (G − S) is decom-
posed into two open paths P(AB) = c′′ ∩ S and P ′(AB) = c′′ ∩ (G − S). The sum over c′′

becomes the sum over a choice of points A, B and open paths P(AB), P ′(AB). It is shown
[91] that US/P satisfies

US =
∑

P(AB)

US/P . (5.15)

On the other hand, the path P ′(AB) becomes a closed loop in G/S that passes through the
point s to which S has shrunk. Thus the second term becomes

US =
∑

c′′⊆G/S, c′′�s

ξi,c′′ ξ j,c′′ U(G/S)/c′′ . (5.16)

From Eqs. (5.14) and (5.16) the UV limit of Bi j is

[Bi j ]
S
UV = BG/S

i j US i, j ∈ (G/S). (5.17)

III) Bmj for m ∈ S and j ∈ G/S.
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Fig. 9. A self-energy subdiagram S and a closed loop c that passes through m ∈ S and j ∈ G/S. Reproduced
with permission from [35].

This case is relevant only when S is a self-energy subdiagram, since for the vertex subdiagram
case the leading contribution comes from the terms in which all lepton lines inS are contracted
with each other.
We denote the lines that are attached to the subdiagram S by i and i ′. (See Fig. 9.) The closed
loop c that contains the lines m ∈ S and j ∈ G/S passes through i and i ′. The sum over loops
c is decomposed into the sum over P = c ∩ G and P ′ = c ∩ (G − S). It is shown [91] that∑

P
ξm,P US/P = US AS

m, (5.18)

where AS
m is a scalar current on the line m of the diagramS. The pathP ′ turns into a closed path

c′ after shrinking S to a point that passes through the line i ∈ G/S. Therefore Bmj becomes

[Bmj ]
S
UV =

(∑
c′

ξ j,c′, ξi,c′ U(G/S)/c′

)
US AS

m

= BG/S
i j AS

m US . (5.19)

The UV limit of the scalar current A j follows from Eq. (4.20), where the path P (that replaces P ′)
is taken arbitrarily between two points attached to external lines. We can always choose the path to
avoid the line j so that B ′

i j in Eq. (4.20) becomes Bi j .
When S is a vertex subdiagram, it is sufficient to consider only A j with j ∈ G/S, since in the

leading contributions of the integrand all the lepton lines in S are contracted and there is no operator
Di left to be turned into scalar current. The sum in Eq. (4.20) consists of two parts, one from P ′ =
P ∩ S and the other from P ′′ = P ∩ (G − S). In the limit (5.2) the scaling behavior (5.4) shows that
the former part gives a sub-leading contribution. Therefore, using Eq. (5.17), we obtain

[A j ]
S
UV = − 1

UG/S

∑
i∈G/S

ηiP ′′ zi BG/S
i j

= AG/S
j . (5.20)

When S is a self-energy subdiagram, the scalar currents of both j ∈ G/S and j ∈ S are relevant.

Case (a) A j for j ∈ G/S.
The same argument for the UV limit as in the vertex subdiagram applies to this case,
which leads to

[A j ]
S
UV = AG/S

j . (5.21)

Case (b) Am for m ∈ S.
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We choose the path P so that it avoids S. Then all Bim in (4.20) fall into type III, whose
UV limits are given by Eq. (5.19). Therefore,

[Am]SUV = − 1

UG/S

∑
k∈P

zk BG/S
ik AS

m

= AG/S
i AS

m, (5.22)

where i is the line adjacent to S.

We recall that Ci j is derived from the part

− qμ

[
∂�μ

∂qν

]
q=0

(5.23)

of Eq. (4.30) with the external vertex inserted into the line j and differentiated with respect to the
external momentum qν flowing through the line i . When S is a vertex subdiagram, Ci j for i or j in S
has no overall UV divergence, since S has, effectively speaking, four legs: one photon line attached
to the external vertex, the other internal photon line that is connected to G/S, and two internal lepton
lines. So it is sufficient to consider the cases i, j ∈ G/S, in which the UV limit of Ci j becomes

[Ci j ]
S
UV = 1

UG/S
CG/S

i j . (5.24)

When S is a self-energy subdiagram, the definition (4.44) of Ci j and the UV limits of Bi j lead to
the following forms:

[C jk]SUV = 1

UG/S
CG/S

jk j, k ∈ G/S, (5.25)

[C f g]SUV = 1

US
CS

f g + 1

US

(
AS

g

∑
h∈S

zh B ′S
f h − AS

f

∑
h∈S

zh B ′S
gh

)

× 1

UG/S

∑
j∈G/S

z j B ′G/S
i j , f, g ∈ S, (5.26)

[C f j ]
S
UV = 1

UG/S
AS

f CG/S
i j + 1

US

∑
g∈S

zg B ′S
f g

1

UG/S

∑
k∈G/S

zk B ′G/S
jk f ∈ S, j ∈ G/S, (5.27)

where i is the line adjacent to S.

5.5. Factorization property of the UV subtraction term

Now we proceed to examine the UV subtraction term along the steps of K-operation to see that it
factorizes into two parts. For simplicity we consider a vertex part 	ν

G defined in Eqs. (4.8) and (4.17),
though the arguments apply to the general cases.

Suppose the UV-divergent subdiagram S is a vertex subdiagram. In step (1) of K-operation we
pick up the terms that are maximally contracted within S. Such a term among the terms with k
contractions, Fk

U 2+k V n−k , has the form:

1

U 2V n−k

{(
Bi j

U

)
· · ·
}

︸ ︷︷ ︸
i, j∈S

{(
Bi ′ j ′

U

)
· · · Al ′ · · ·

}
︸ ︷︷ ︸

i ′, j ′,l ′∈G/S

. (5.28)

The first factor in the braces is a product of the Bi j with i, j ∈ S, while the second factor is a product
that consists of (k − nS) Bi ′ j ′ and several scalar currents whose indices i ′, j ′ are in G/S.
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In step (2) we consider the UV limit (5.2). This is achieved by replacing the building blocks U ,
Bi j , and A j by their UV limits, [U ]SUV, [Bi j ]SUV, and [A j ]SUV, respectively. Then Eq. (5.28) turns into

1

U 2
S

{(
BS

i j

US

)
· · ·
}

︸ ︷︷ ︸
≡g[S]

1

U 2
G/S

⎧⎨⎩
⎛⎝ BG/S

i ′ j ′

UG/S

⎞⎠ · · · AG/S
l ′ · · ·

⎫⎬⎭︸ ︷︷ ︸
≡g[G/S]

1

V n−k
G/S

. (5.29)

The first part depends only on zi with i ∈ S, which we denote by g[S]. The second part depends only
on zi with i ∈ G/S. It is denoted similarly by g[G/S]. In the naive UV limit, V leads to VG/S .

In step (3) VG/S is replaced by VS + VG/S . The integral now becomes∫
(dz)G g[S] g[G/S]

1

(VS + VG/S)n−k
. (5.30)

We shall see that it factorizes into S and G/S parts. Firstly, the identity

1 =
∫ 1

0

ds

s
δ
(

1 − zS
s

) ∫ 1

0

dt

t
δ
(

1 − zG/S
t

)
(5.31)

is inserted into the integral, where zS and zG/S are defined by zS =∑i∈S zi and zG/S =∑i∈G/S zi ,
respectively. Secondly, we rescale the Feynman parameters as follows:

zi → szi i ∈ S
zi → t zi i ∈ G/S. (5.32)

Since the V -functions are homogeneous polynomials of degree 1, they scale in such a manner as
VS → s VS and VG/S → t VG/S . Other parts of the integrand and the integration measure also scale
accordingly.

Then, using the Feynman integral formula

	(k + l)
∫ 1

0
ds dt δ(1 − s − t)

sk−1t l−1

(s A + t B)k+l
= 	(k)

Ak

	(l)

Bl
, (5.33)

the integral is shown to be factorized into two parts:∫
dzS δ(1 − zS) g[S]

∫
dzG/S δ(1 − zG/S) g[G/S]

∫
ds dt δ(1 − s − t)

sα−1tβ−1

(sVS + tVG/S)α+β

=
∫

(dz)S
g[S]

V α
S

×
∫

(dz)G/S
g[G/S]

V β
G/S

, (5.34)

where α and β are constants determined by the rescaling (5.32).
Based on these observations the whole integral of the vertex part 	ν

G is shown to be factorized in
the UV limit as

KS	ν
G = LUV

S 	ν
G/S, (5.35)

where LUV
S is the UV-divergent part of the vertex renormalization constant LS and 	ν

G/S is the vertex
part of the residual diagram G/S.
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When S is a self-energy subdiagram, the factorization is not apparent because not all /Dm with
m ∈ S are contracted. From Eqs. (5.19) and (5.22) we can symbolically write the uncontracted /Dm as

[ /Dm]SUV = AS
m /DG/S

i ′′ , (5.36)

where i ′′ is a fictitious line related to i and i ′. After a little algebra, one finds [87,89]

KS	ν
G = δmUV

S 	ν
G/S(i∗) + BUV

S 	ν
G/[S,i ′], (5.37)

where δmUV
S is the UV-divergent part of the mass renormalization constant δmS and BUV

S is that of
the wavefunction renormalization constant BS . G/S(i∗) denotes the diagram obtained by shrinkingS
to a point, where i∗ indicates a two-point vertex between lines i and i ′. G/[S, i ′] denotes the diagram
derived from G by shrinking S to a point and eliminating the line i ′. It can be reduced to the form
	ν
G/S after integration by parts with respect to zi .
Nested UV singularities are handled by following Zimmermann’s forest formula [92]. The UV

divergence of the diagram is identified by a structure called a forest, which is a set of non-
overlapping UV-divergent subdiagrams2. This can be easily translated to successive applications of
KSi -operations. Then, we can obtain the UV-divergence-free magnetic moment amplitude

MR
G =

∑
f

(−KSi ) × (−KS j ) × · · · MG, (5.38)

where Si is one of the subdiagrams belonging to the forest f and the sum is taken over all forests f
constructed for the diagram G.

6. Treatment of IR divergences

The UV separation method in Ref. [90] is easily implemented in the automation code gencodeN.
However, the IR treatment is not so simple. In Ref. [90], both UV and IR terms are derived by using
power-counting rules. The UV divergence occurs as the leading term of the power-counting. The
separation of IR divergences in Ref. [90] is, however, based on power-counting through elaborate
examination of the individual integrands, and thus it makes automated treatment difficult. Therefore,
we invented another approach based on the graphical observation. Here, we describe our new IR
treatment , which was reported in Ref. [36].

6.1. General remarks on IR divergence

The magnetic form factor is free from UV and IR divergences once it is fully renormalized. However,
individual diagrams suffer from IR divergences that cancel out only after all diagrams are combined.

The root cause of IR divergence is the vanishing of the denominator of the photon propagator
1/k2 in the limit k → 0. This is, however, not the sufficient condition since it gives a finite result
on integration over the 4-dimensional momentum k. In order that it becomes divergent, it must be
enhanced by vanishing of the denominators of at least two lepton propagators due to some kinemat-
ical constraints. Typically, this happens when the momentum of each of these lepton propagators
is constrained by sharing a three-point vertex with the soft photon and an external on-shell lepton
line. When the external momentum p is constrained by the on-shell condition p2 = m2, the lepton

2 “Non-overlapping” means that a pair of subdiagrams is disjoint, or one of the pair is included in the other.
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propagator in question behaves as

1

(p + k)2 − m2 = 1

2p · k + k2 ∼ 1

2p · k
(6.1)

for k → 0. These lepton propagators will be called “enhancers”. Logarithmic IR divergence takes
place when k-integration is carried out and the soft photon singularity is assisted by two enhancers.
When the vertex Feynman diagram G(k) in question has a self-energy subdiagram, we find three
enhancers due to the kinematical constraint of the two-point vertex, so that we find the IR divergence
to be linear. The IR divergence becomes even more severe when the diagram G(k) has more than one
self-energy subdiagram, which effectively brings in a number of two-point vertices.

To handle the IR divergences, we again adopt a subtractive approach, in which an integral of IR
subtraction terms is constructed in such a way that it cancels out the IR divergence of the integral
M (2n)

G of Eq. (4.31) point-by-point in the Feynman parameter space.

6.2. IR divergence caused by residual self-mass

One type of IR divergence appears as a consequence of our particular treatment of the UV divergences
by means of K-operation. Suppose a diagram G has a self-energy subdiagram S. As is readily seen
from the analysis of Feynman diagrams, this divergence is not the source of the real problem since it
must be canceled exactly by the mass-renormalization counter term δmS MG/S (i�), where δmS is the
(UV-divergent) self-mass associated with the subdiagram S defined on the mass shell. The reduced
magnetic moment amplitude MG/S (i�) is the one that has a linear IR divergence. As a consequence,

MG − δmS MG/S (i�) (6.2)

is free from linear IR divergence. Although this cancellation is analytically valid, however, it is not
a point-wise cancellation in the domain of MG . Our problem is thus to translate the second term
into a form that is defined in the same domain as that of MG and cancels the IR divergence of MG
point-by-point.

Now, as was noted in Eq. (5.37), the K-operation for the subdiagram S acting on MG creates

KS MG = δmUV
S MG/S (i�) + BUV

S MG/[S,i ′]. (6.3)

If we find an integral that causes point-wise cancellation of the linear IR divergence in the domain
of MG and also produces factorization as

δ̃mS MG/S (i�), (6.4)

where

δ̃mS ≡ δmS − δmUV
S , (6.5)

then from Eqs. (6.3) and (6.4) we would have

KS MG + δ̃mS MG/S (i�) = δmS MG/S (i�) + BUV
S MG/[S,i ′]. (6.6)

If we schematically introduce an operator RS that produces the integral of Eq. (6.4) as

RS MG ≡ δ̃mS MG/S (i�), (6.7)

Eq. (6.6) would then be written as

(KS + RS)MG = δmS MG/S (i�) + BUV
S MG/[S,i ′]. (6.8)

It turns out that it is not difficult to construct such an integral if we use the factorization formula
(5.34) backward. Furthermore, it can be readily incorporated in our automation algorithm. We call
this subtraction scheme the residual self-mass subtraction, or “R-subtraction” operation.
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Fig. 10. A vertex diagram G(k) and a subdiagram S(k) (left), the reduced vertex diagram R(k) with a vertex
MS(k) (right). Reproduced with permission from [36].

6.3. I-subtraction operation

After the linear (or worse) IR divergences are disposed of by the K-operation and R-subtraction
operation, we are still left with logarithmic IR divergences. To treat these divergences, let us consider
a vertex diagramG(k) that has a subdiagramS(k). Here, k refers to an external photon vertex attached
to a lepton line �k of the self-energy-like subdiagram S. The reduced diagram S(k) is connected to
the remaining part of G(k) by lepton lines �i and � j . (See Fig. 10 (left).) We denote the reduced
diagram as R(k) ≡ G(k)/S(k).

This diagram exhibits IR-divergent behavior when the momenta of (all or some) photons in R go
to zero, accompanied by the enhancers �i and � j . The substructure S(k) to which these enhancers
are attached can be considered as a magnetic moment of the lower order. Thus the amplitude in this
limit becomes that of the diagram R(k), obtained by replacing S(k) by a vertex that is weighted by
MS(k), as shown in Fig. 10 (right). R(k) develops a logarithmic IR divergence, as is easily verified
by power-counting.

Since we are dealing with the Ward–Takahashi-summed diagram defined by Eq. (4.30), we have to
consider the sum of contributions of vertex diagramsS(k) which are obtained by inserting an external
vertex k to the self-energy-like diagram S in every possible way. In the calculation of the diagram
G, the IR divergence associated with the substructure S has a form that consists of contributions
from the vertex diagram R(k) and the magnetic projection of the diagram S. The IR divergence is
contained in the vertex renormalization constant LR(k).

For the explicit expression of the IR subtraction term that cancels the divergence mentioned above,
we consider the term

L̃G/S(k)MS, (6.9)

where L̃ is the residual part of the vertex renormalization constant

L̃G/S(k) ≡ LG/S(k) − LUV
G/S(k). (6.10)

We construct an integral that corresponds to Eq. (6.9) in the domain of MG . We call this subtraction
scheme the “I-subtraction” operation.

All quantities appearing in the IR subtraction terms, the magnetic moment parts MG and MG(i�),
and part of the renormalization constants δ̃mG and L̃G , may contain UV subdivergences that have to
be subtracted by K-operations. We then introduce the new notations LR and δmR, similar to MR in
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(5.38), for the UV-divergence-free quantities as

LR
G =

∑
f

⎡⎣∏
Si ∈ f

(−KS)

⎤⎦ L̃G, (6.11)

δmR
G =

∑
f

⎡⎣∏
Si ∈ f

(−KS)

⎤⎦ δ̃mG, (6.12)

where the sum is taken over all forests f of a diagram G.
Using the quantities with the superscript “R”, we redefine R- and I-subtraction operations as

follows:

RS MG ≡ δmR
S MR

G/S (i�), (6.13)

IS MG ≡ LR
S MR

G/S . (6.14)

6.4. Nested IR singularity and annotated forests

A diagram may contain more than one source of IR divergences that lead to complicated diver-
gence structure. They are treated by combinations of I- and R-subtraction operations conducted by
annotated forests. For a diagram G containing a single self-energy subdiagram S, the associated IR
divergences are treated by these two types of operations, and the IR-finite amplitude is thus given by

�MG = M R
G − IS MR

G − RS MR
G . (6.15)

When the diagram has more than one such self-energy subdiagram, the IR divergences due to all those
subdiagrams have to be subtracted. The finite amplitude free from both IR and UV divergences is
obtained schematically by

�MG =
∏
S

(1 − IS − RS)MR
G , (6.16)

where the product is taken over all self-energy subdiagrams of the diagram G.
By expanding the product in Eq. (6.16), we are led to a forest-like structure that is analogous to the

renormalization of UV divergences. In this case, a forest consists of only self-energy subdiagrams,
and each subdiagram is assigned a distinction of R-subtraction or I-subtraction. We call such a forest
an “annotated forest”. Equation (6.16) is thus turned into a sum over all annotated forests f̃ as∑

f̃

(−ISi ) · · · (−RS j ) · · · MR
G , (6.17)

where Si , . . . and S j , . . . are elements of the annotated forest f̃ that are assigned to I-subtraction
operations and R-subtraction operations, respectively. Those operators act on the amplitude MR

G
successively.

A forest is represented as a tree form that expresses the inclusion relation of the subdiagrams
in the forest. (See Fig. 11.) We assign each subdiagram to a node. If a subdiagram is included in
another subdiagram S, it is expressed as a child node of the node assigned to S. We consider the
diagram G itself as the root node of the tree. For later convenience, we denote the subdiagrams that
contain another subdiagram S as (direct) ancestors of S, and the subdiagrams that are included in S
as descendants of S.
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Fig. 11. An example of nested subdiagrams of a forest and the tree representation. Reproduced with permission
from [36].

For the annotated forest, a distinct operation of I-subtraction or R-subtraction is assigned to the
node. We call such a tree an annotated tree hereafter. Each node is then translated into the component
term of the reduced diagram.

For the simplest example in which G has a single subdiagram S, the tree form of the forest is shown
as follows:

When we consider the IS operation, the result is given as a product of a vertex renormalization
constant LR

R(k) for the part of the diagram R(k) ≡ G/S(k) and a magnetic moment part MR
S for the

subdiagram S. These subdiagram parts are related to the nodes in the above tree labeled by G and S,
respectively. Thus we represent the assignment of components of the subtraction term graphically as
follows:

When the R-subtraction RS is considered, the assignment is represented in a similar manner, as
follows:

Here, the subdiagram S corresponding to the right node is related to the residual self-mass term
δmR

S , and the reduced diagram G/S (i�) that corresponds to the left node is assigned to the magnetic
moment part MR

G/S (i�).
This representation can be extended to more general cases. For an annotated forest that corresponds

to a nested singularity, the successive operations of I-/R-subtractions in an appropriate order are
interpreted to extend the tree by following the relevant process shown above. Then we obtain a tree
representation of the annotated forest in which distinct types of MR-, LR-, or δmR are assigned to
the nodes.

The nodes of the tree are related to the reduced diagrams, and so the annotated tree has a direct
interpretation of the IR subtraction term in the form of a product of the component terms for their
respective reduced diagrams. Since the tree expresses the nested structure of subdiagrams in the for-
est, the relevant set of Feynman parameters for the component term, i.e., how the reduced subdiagram
for the component term is embedded in the original diagram, can be easily read off from the tree.
This feature is crucial in constructing the IR subtraction integral so that the point-wise subtraction
of IR singularities is achieved.

Thus far, the annotated tree provides a graphical representation of the annotated forest, and it has a
one-to-one correspondence. It is readily translated into a symbolic form of the associated IR subtrac-
tion term, which is also significant for the residual renormalization step. The set of IR subtraction
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terms can be obtained by finding the set of annotated trees that have proper assignment of types to
the tree nodes consisting of self-energy subdiagrams.

They are summarized as follows:

1. There is one and only one node to which the magnetic moment part MR is assigned.
2. The nodes that are assigned to the I-subtraction, LR, are restricted to the ancestor nodes of the

magnetic moment part.
3. The nodes that are assigned to the residual self-mass subtraction, δmR, do not appear as

ancestor nodes of the magnetic moment part.

It turns out that to satisfy these rules the assignment is uniquely determined once a node is chosen for
the magnetic moment part. We first pick up a node that is assigned to the magnetic part MR, and then
the nodes that lie as ancestors of the M-node are associated with the I-subtractions. The remaining
nodes are assigned to the R-subtractions.

We have finally obtained the finite magnetic moment amplitude �MG by applying the R- and
I-subtractions following the annotated forest formula:

�MG =
∑

f̃

(−ISi ) × · · · (−RS j ) × · · · MR
G , (6.18)

where the sum is over all annotated forests f̃ constructed for the diagram G. �MG is numerically
evaluated by the adaptive-iterative Monte Carlo integration program VEGAS [93].

7. Residual renormalization: Examples of diagrams without a fermion loop

The construction of UV- and IR-finite integrals �MG for the gauge-invariant set is outlined in the
preceding sections. To relate them to the standard on-shell renormalization, however, we have to
perform another step, which we call residual renormalization. The derivation of the residual renor-
malization formula relies only on graphical information, so that it does not require the explicit form
of �MG .

For the gauge-invariant set of diagrams without a fermion loop, hereafter called q-type, once finite
integrals and residual renormalization formulae are constructed, we are ready to calculate their g − 2
contribution. Residual renormalization formulae for diagrams with vacuum-polarization subdia-
grams can be readily derived from the q-type formulae. Diagrams with an l-l loop can be formulated
by a slight modification of the method adopted for the q-type diagrams.

Because of shortage of space, we present here only examples of residual renormalization for the
cases of the second, fourth, and sixth orders. A detailed description of residual renormalization for
q-type diagrams up to the eighth order is given in Ref. [46]. Formulae for the 10th-order case are
presented in T. Aoyama et al. (manuscript in preparation).

7.1. Second order

The second-order calculation is easy even if we use the vertex diagram directly. But, for higher-order
calculations, we need the second-order amplitude in the form summed using the Ward–Takahashi
identity, which is

a(2) = �M2 = M2 =
(−1

4

)∫ 1

0
dz1

N0 + Z0

U 2V
, (7.1)
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Fig. 12. Fourth-order self-energy-like diagrams without a fermion loop. The crossing and rainbow diagrams
are called M4a and M4b. The Feynman parameters z1, z2, z3 and za, zb are assigned to the fermion lines and
photon lines, respectively, as shown in the figures. Reproduced with permission from [43].

where the Feynman parameters assigned to the electron and photon lines are z1 and za , respec-
tively, and

V = z1 − G, U = z1 + za = 1, G = z1 A1, A1 = 1 − z1/U,

N0 = 4G(A1 − 2), Z0 = 4z1 A1. (7.2)

This is a finite integral and neither UV nor IR subtractions are needed. Hence, no residual
renormalization is required in this case.

7.2. Fourth-order q-type diagrams

There are two diagrams of the fourth-order q-type, as shown in Fig. 12. Let us begin with the consid-
eration of the standard on-shell renormalization of the fourth-order magnetic moment a(4)[q-type],
which can be expressed in the form

a(4)[q-type] = M4a + M4b − 2L2 M2 − B2 M2 − δm2 M2∗, (7.3)

where M2 is the second-order magnetic moment and M2∗ is obtained from M2 by inserting a two-
point vertex in the lepton line of M2. L2, B2, and δm2 are the second-order vertex-, wavefunction-,
and mass-renormalization constants, respectively, determined with the standard on-shell condition.

The UV subtraction terms of the self-energy-like diagram M4a are listed as

forests K -operation subtraction term
{1, 2; a} K12 LUV

2 M2

{2, 3; b} K23 LUV
2 M2,

(7.4)

where the subdiagrams are expressed by their line indices enclosed by braces, and the subscripts
of K-operations distinguish the subdiagram by the indices of their fermion lines. Note that no IR
subtraction is needed because M4a has no self-energy subdiagram.

The amplitude M4a is given by the Feynman parametric integral

M4a =
(

−1

4

)2

2
∫

(dz)G
U 2

[
E0 + C0

V
+ N0 + Z0

V 2 + N1 + Z1

U V

]
, (7.5)

where the building blocks are

(dz)G = dz1dz2dz3dzadzbδ(1 − z1 − z2 − z3 − za − zb),

U = z2(z1a + z3b) + z1az3b, B12 = z3b, B23 = z1a, B13 = −z2,

B11 = z3b + z2, B22 = z1a + z3b, B33 = z1a + z2,

V = z123 − G, G = z1 A1 + z2 A2 + z2 A3,

Ai = 1 − (z1 B1i + z2 B2i + z3 B3i )/U, i = 1, 2, 3. (7.6)
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The integrand of M4a is given by

E0 = 8(2A1 A2 A3 − A1 A2 − A2 A3 − A3 A1),

C0 = −8(C12 + C13 + C23),

N0 = 8G(2A1 A2 A3 − A1 A2 − A2 A3 − A3 A1 − A1 − A2 − A3),

Z0 = 8z1(−A1 + A2 + A3 + A1 A2 + A1 A3 − A2 A3)

+ 8z2(−A1 + A2 − A3 − A1 A2 + A1 A3 − A2 A3 + 2A1 A2 A3)

+ 8z3(A1 + A2 − A3 − A1 A2 + A1 A3 + A2 A3),

N1 = 8G[2(B12 + B23 + B13) − A1 B23 − 4A2 B13 − A3 B12],

Z1 = 8z1(−A1 B23 + A3 B12 − B12 − B13)

+ 8z2(−A1 B23 − 4A2 B13 − A3 B12 + B12 + B23)

+ 8z3(A1 B23 − A3 B12 − B23 − B13). (7.7)

The finite amplitude is then defined as

�M4a ≡ (1 − K12 − K23)M4a = M4a − 2LUV
2 M2. (7.8)

The second term of (7.8) is used for computer programing of �M4a , while the third term is used
to derive the residual renormalization formula. The finite integral �M4a is ready to be numerically
evaluated by VEGAS.

We give the explicit form of K12 M4a as an example of the K-operation. The form of the integrand
obtained by the K12 operation is

N1 = 8G B12(2 − A3), Z1 = −8z3 A3 B12, N0 = C0 = E0 = Z0 = 0, (7.9)

where the building blocks are those obtained by the K12-operation

U = z12az3b, B13 = B23 = 0, B33 = z12a, B11 = B12 = B22 = z3b,

V = z123 − G, G = z1 A1 + z2 A2 + z3 A3,

Ai = 1 − z1 B1i − z2 B2i − z3 B3i , i = 1, 2, 3. (7.10)

K23 M4a can be constructed in a similar way.
The rainbow diagram M4b has both UV and IR divergences. The UV divergence arises from the

self-energy subdiagram {2; b} and can be handled by the K2-operation:

forests K -operation subtraction term
{2; b} K2 BUV

2 M2 + δm2 M2�
. (7.11)

Then the UV-finite amplitude is given by

MR
4b = (1 − K2)M4b = M4b − (BUV

2 M2 + δm2 M2∗). (7.12)

The IR divergences occur when the loop momentum of the photon a vanishes. In this limit, the
self-energy subdiagram {2; b} behaves as a second-order magnetic moment M2 and can be replaced
by a point vertex. The residual diagram {1, 3; a} then resembles the second-order vertex diagram.
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Fig. 13. Sixth-order self-energy-like diagrams without a fermion loop. They represents 50 vertex diagrams
in total. Reproduced with permission from [45].

From this observation, the IR divergence of MR
4b can be subtracted by performing an I13-subtraction

operation:

annotated forests R- and/or I-subtractions subtraction term
{2; b} I13 LR

2 M2
. (7.13)

The finite amplitude is then obtained as

�M4b = (1 − I13)MR
4b = MR

4b − LR
2 M2. (7.14)

The second term will be expressed in the same Feynman parameter space of M4b so that a point-wise
subtraction should be realized. The finite amplitude �M4b is to be numerically evaluated by VEGAS.

The second-order renormalization constants L2 and B2 are decomposed such that

L2 = LUV
2 + LR

2 , B2 = BUV
2 + BR

2 , �LB2 ≡ LR
2 + BR

2 . (7.15)

Because of the Ward–Takahashi identity L2 + B2 = 0, the IR divergence in LR
2 and BR

2 cancels out
and the sum �LB2 is finite.

Substituting (7.8), (7.12), (7.14), and (7.15) into (7.3), we obtain the expression written down with
finite quantities only:

a(4)[q-type] = �M4a + �M4b − �LB2 M2, (7.16)

where the last term −�LB2 M2 is the residual renormalization term. Substituting the numerical values

�M4a = 0.218 347 (32), �M4b = −0.187 478 (35), �LB2 = 0.75, M2 = 0.5 (7.17)

into the residual renormalization formula (7.16), we obtain

a(4)[q-type] = −0.344 131 (48), (7.18)

which is consistent with the analytic result a(4)[q-type] = −0.344 166 · · · [23,24].

7.3. Sixth-order q-type diagrams

The sixth-order q-type diagram is evaluated in a way similar to the fourth-order q-type. R-subtraction
appears for the first time in this order for the diagrams m6b and m6c shown in Fig. 13, both of which
contain a fourth-order self-energy subdiagram.

As an example, let us explain the construction of the finite amplitude of the diagram m6c. The
fermion lines are labeled 1, 2, . . . , 5 from left to right, and the photon lines are labeled a, b, c.
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The UV-divergent subdiagrams of m6c are {2, 3, 4; b, c}, {2, 3; b}, and {3, 4; c}. Five UV forests
constructed from them and their corresponding K-operations are

forests K -operation subtraction terms
{2, 3, 4; b, c} K234 BUV

4a M2 + δmUV
4a M2∗

{2, 3; b, c} K23 LUV
2 M4b

{3, 4; c} K34 LUV
2 M4b

{2, 3, 4; b, c}{2, 3; b} K234K23 LUV
2 (BUV

2 M2 + δm2 M2∗)

{2, 3, 4; b, c}{3, 4; c} K234K34 LUV
2 (BUV

2 M2 + δm2 M2∗)

.

The self-energy subdiagram in m6c is {2,3,4;b,c} only. The IR annotated forests are constructed as

annotated forests R − or I -subtraction subtraction terms
{2, 3, 4; b, c} R234 δmR

4a M2∗

{2, 3, 4; b, c} I15 LR
2 MR

4a

.

Note that MR
4a = �M4a given in (7.8), because no IR divergence is found in M4a .

The finite amplitude is then obtained from

�M6c = (1 − K234 − K23 − K34 + K234K23 + K234K34 − R234 − I15)M6c. (7.19)

Adding up all self-energy-like diagrams of Fig. 13, we obtain the final form of a(6)
e [q-type] as the

sum of finite quantities only:

a(6)
e [q-type] = �M6 − 3�M4�LB2 + �M2{−�LB4 + 2(�LB2)

2}, (7.20)

where the last three terms are residual renormalization terms, and

�M6 =
∑

i=a,···h
ηi�M6i , ηi =

{
2 for i = d, g,

1 otherwise,
(7.21)

�LB4 =
∑

i=a,b

⎛⎝BR
4i +

∑
j=1,2,3

LR
4i( j)

⎞⎠− LR
2 �LB2. (7.22)

B4i and L4i( j) are the wavefunction- and vertex-renormalization constants derived from the self-
energy diagram M4i in Fig. 12.
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