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Quantum geometrodynamics with intrinsic time development and momentric variables is pre-
sented. An underlying SU (3) group structure at each spatial point regulates the theory. The
intrinsic time behavior of the theory is analyzed, together with its ground state and primor-
dial quantum fluctuations. Cotton–York potential dominates at early times when the universe
was small; the ground state naturally resolves Penrose’s Weyl curvature hypothesis, and thermo-
dynamic and gravitational “arrows of time” point in the same direction. Ricci scalar potential
corresponding to Einstein’s general relativity emerges as a zero-point energy contribution. A new
set of fundamental commutation relations without Planck’s constant emerges from the unification
of gravitation and quantum mechanics.
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1. Intrinsic time development, and momentric variables as SU(3) generators

A century after the birth of Einstein’s general relativity (GR), successful quantization of the gravi-
tational field remains the preeminent challenge. Geometrodynamics with a positive definite spatial
metric is the simplest consistent framework to implement fundamental canonical commutation rela-
tions (CR) predicated on the existence of spacelike hypersurfaces. In quantum gravity, spacetime is
a “concept of limited validity” [1] and “‘time’ must be determined intrinsically” [2]. A full theory of
quantum geometrodynamics dictated by first-order Schrödinger evolution in intrinsic time, i� δ�

δT =
HPhys.�, and equipped with a diffeomorphism-invariant physical Hamiltonian and time-ordering
was formulated recently [3,4]. Decomposition of the fundamental geometrodynamic degrees of

freedom
(
qi j , π̃

i j
)

singles out the canonical pair
(

ln q
1
3 , π̃

)
, which commutes with the remaining

unimodular qi j = q− 1
3 qi j and traceless π i j = q

1
3
(
π̃ i j − 1

3qi j π̃
)
. Hodge decomposition for compact

manifolds yields δ ln q
1
3 = δT + ∇iδY i , wherein the spatially independent δT is a three-dimensional

diffeomorphism-invariant (3dDI) quantity which serves as the intrinsic time interval, whereas
∇iδY i can be gauged away since L

δ
−→
N

ln q
1
3 = 2

3∇iδN i . The Hamiltonian, HPhys = ∫ H̄(x)
β

d3x , and

ordering of the time development operator U (T, T0) = T
{
exp

[− i
�

∫ T
T0

HPhys
(
T ′) δT ′]} are 3dDI

provided

H̄ =
√

π̄ i j Ḡi jkl π̄kl + V[qi j ] (1)
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is a scalar density of weight one [3]. Einstein’s GR (with β = 1√
6

and V = − q
(2κ)2 [R − 2�eff]) is a

particular realization of this wider class of theories.1

Difficulties in implementing π̄ i j as a self-adjoint traceless operator in the metric representation
lead us to summon the momentric variable, which is classically π̄ i

j = q̄ jm π̄ im . The fundamental CR
is restriction of Klauder’s affine algebra (see [5] and references therein) to the traceless momentric
and unimodular part of the spatial metric,[

q̄i j (x) , q̄kl (y)
] = 0,

[
q̄i j (x) , ˆ̄πk

l (y)
] = i�Ēk

l(i j)δ (x − y) ,[ ˆ̄π i
j (x) , π̄k

l (y)
] = i�

2

(
δk

j
ˆ̄π i

l − δi
l
ˆ̄πk

j

)
δ (x − y) ;

(2)

wherein Ē i
j(mn) = 1

2

(
δi

mq jn + δi
nq jm

) − 1
3δi

j qmn
(
with properties δ

j
i Ē i

j(mn) = Ē i
j(mn)q̄

mn = 0;
Ē i

j il = Ē i
jli = 5

3q jl
)

is the vielbein for the supermetric Ḡi jkl = Ēm
n(i j) Ēn

m(kl). Quantum mechanically,
the momentric operators and CR can be explicitly realized in the metric representation by

ˆ̄π i
j (x) = �

i
Ē i

j(mn) (x)
δ

δq̄mn (x)
= �

i

δ

δq̄mn (x)
Ē i

j(mn) (x) = ˆ̄π†i
j (x) , (3)

which are self-adjoint on account of
[

δ
δq̄mn(x)

, Ē i
j(mn) (x)

]
= 0. These eight momentric variables

generate SL (3, R) transformations of q̄i j that preserve positivity and unimodularity. Moreover, it
is crucial to realize that they generate, by themselves, at each spatial point, an SU(3) algebra. In
fact, with Gell-Mann matrices λA=1,...,8, T A (x) = 1

�δ(0)

(
λA

) j
i

ˆ̄π i
j (x) satisfy

[
T A (x) , T B (y)

] =
i f AB

C T C δ(x−y)
δ(0)

with SU (3) structure constants f AB
C [6].

Perturbative renormalizability of GR can be attained by adding higher-derivative terms, but
4-covariance locks higher temporal and spatial derivatives to the same order, compromising the sta-
bility and unitarity of the theory [7]. The paradigm shift from 4-covariance to 3dDI not only resolves
the “problem of time,” but also leads to the generic weight two (semi-)positive definite potential [3],

V = [1
2

(
q̄ik q̄ jl + q̄il q̄ jk

) + γ q̃i j q̃kl
]

W̃ i j W̃ kl, γ ≥ −1
3 ;

W̃ i
j =

[√
q

(
�′ + a′ R

)
δi

j + b�
√

q R̄i
j + g�C̃ i

j

]
;

(4)

wherein R and R̄i
j are respectively the scalar and traceless parts of the spatial Ricci curvature, while

C̃ i
j is the Cotton–York tensor (density) which is third order in spatial derivatives and associated with

the dimensionless coupling constant g. In conjunction with intrinsic time evolution with HPhys, this
framework presents, in quantum gravity, a new vista to surmount conceptual and technical obstacles.

1 On account of the quadratic dependence on momenta and ordering ambiguities of the Hamiltonian, which
also depends on the intrinsic time, this formulation can reproduce the physics of the usual Wheeler–DeWitt
(WDW) equation only at the classical limit, and certainly not at the quantum level. There are valid reasons not
to replicate the second-order Klein–Gordon-like WDW scheme which, among other difficulties, fails to yield
a positive definite conserved probability density if we adhere to the “one-universe picture” and do not invoke
third quantization. Rather, this quantum mechanically inequivalent formulation overcomes, in conjunction with
intrinsic time evolution, many of the conceptual and technical problems of the WDW scheme, but ensures that
the classical low-curvature limit of Einstein’s GR is recovered.
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2. Free Hamiltonian

The free theory is characterized by SU(3) invariance generated by the momentric (whereas π̃ i j gen-
erate translations which do not preserve the positivity of the metric), because the Casimir invariant
T AT A is related to the kinetic operator in Eq. (1) through

�
2δ2 (0)

2
T AT A = ˆ̄π i†

j
ˆ̄π j

i = ˆ̄π i
j
ˆ̄π j

i = ˆ̄π i j ˆ̄Gi jkl ˆ̄πkl
. (5)

The upshot is its spectrum can be labeled by eigenvalues of the complete commuting set at each

spatial point comprising the two Casimirs L2 = T AT A, C = dABC T AT B T C ∝ det
(

ˆ̄π i
j

)
; Cartan

subalgebra T 3, T 8; and isospin I = ∑3
B=1 T B T B . An underlying group structure has the advantage

that the action of the momentric on wavefunctions by functional differentiation can be traded for its
well-defined action as generators of SU (3) on states expanded in this basis, since

�

i

(
λA

)i

j
Ē j

i(mn)

δ

δq̄mn (x)

〈
q̄kl

∣∣∣∣∣∏
y

∣∣∣∣∣ l2, C, I, m3, m8

〉
y

= �δ (0)

2

〈
q̄kl

∣∣∣∣∣T A (x)
∏

y

∣∣∣∣∣ l2, C, I, m3, m8

〉
y

.

(6)

For the free theory, the ground state with zero energy, |0〉, corresponds to l2 = 0 ∀x , which is an

SU (3) singlet state annihilated by all the momentric operators ( ˆ̄π i
j (x) |0〉 = 0); it is also 3dDI

because −2∇ j ˆ̄π j
i generates spatial diffeomorphisms of q̄i j .

3. Asymptotic behavior of the Hamiltonian at early and late intrinsic times

Hodge decomposition for δ ln q
1
3 and its Heisenberg equation of motion leads to d

dT ln q
1
3 (x, T ) =

∂
∂T ln q

1
3 + 1

i�

[
ln q

1
3 , HPhys

]
= 1, with solution ln

[
q(x,T )

q(x,Tnow)

]
= 3(T − Tnow), and −∞ < T < ∞.

Moreover, the Hodge decomposition also implies that the change in the global intrinsic time is pro-
portional to the logarithmic change in the volume of the universe, δT = 2

3δ ln V , i.e. T − Tnow =
2
3 ln (V/Vnow).2 Explicitly separating out T -dependence from entities (labeled with overline) which
depend only on q̄i j ,

W̃ i
j =

[√
q

(
�′ + a′ R

)
δi

j + b′√q R̄i
j + g�C̃ i

j

]
=

[√
q

(
�′ + a′q− 1

3 q̄kl Rkl

)
δi

j + b′√qq− 1
3 q̄ ik R̄k j + g�C̃ i

j

]
+ (∂i ln q terms) , (7)

with the q-independent Cotton–York tensor density C̃ i
j which is conformally invariant. The theory

is not (intrinsic) time-reversal invariant; furthermore, the exponential scaling behavior of q with
intrinsic time implies that in the limit T − Tnow → −∞, V/Vnow → 0 (i.e. early times, when the
universe was very small in volume), the potentialV was dominated by the Cotton–York term, whereas
the limit T − Tnow → ∞, V/Vnow → ∞ (i.e. late times, when the universe becomes large) will
be dominated by the cosmological constant term. This is compatible with current observations of
our ever expanding universe, with a middle period in which curvature and cosmological terms are
comparable in importance.

2 In FLRW cosmology, the intrinsic time interval can be measured through the redshift z.
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4. Early universe and Cotton–York dominance

In the era of Cotton–York dominance at the beginning of the universe, H̄ =
√

ˆ̄π† j
i

ˆ̄π i
j + g2�2C̃ j

i C̃ i
j .

A number of intriguing facts conspire to simplify and regulate the Hamiltonian: The trace-
less Cotton–York tensor density is expressible as C̃ i

j = Ē i
j(mn)

δW
δq̄mn

, wherein W = 1
4

∫
ε̃i jk(

�̄l
im∂ j �̄

m
kl + 2

3 �̄l
im�̄m

jn�̄
n
kl

)
d3x is the 3dDI Chern–Simons functional of the affine connection

of q̄i j . This leads to the similarity transformation of the momentric,

Q̂i
j = egW ˆ̄π i

j e
−gW = �

i
Ē i

j(mn)

[
δ

δq̄mn
− g

δW

δq̄mn

]
= �

i
Ē i

j(mn)

δ

δq̄mn
+ ig�C̃ i

j . (8)

Moreover,
[
ˆ̄π i

j , C̃ j
i

]
= 0, i.e. without the zero-point energy (ZPE) contribution.3 Consequently, the

Hamiltonian density is simply H̄ =
√

Q̂†i
j Q̂ j

i =
√

Q̂i
j Q̂† j

i . While Q̂†i
j and Q̂i

j are related to ˆ̄π i
j by

e∓gW similarity transformations, they are non-Hermitian and generate two unitarily inequivalent
representations of the non-compact group SL (3, R) at each spatial point; whereas the momentric
ˆ̄π i

j = 1
2

(
Q̂†i

j + Q̂i
j

)
generates a unitary representation of

∏
x SU (3)x .

5. Initial state of the universe and Penrose’s Weyl curvature hypothesis

From the classical perspective, H̄ =
√

π̄
j

i π̄ i
j + g2�2C̃ j

i C̃ i
j attains its lowest value iff the momentric

and Cotton–York tensor vanish identically, the latter being precisely the criterion for conformal flat-
ness in three dimensions.4 The vanishing of the momentric (hence the traceless part of the classical
extrinsic curvature) and spatial conformal flatness at T → −∞ (q → 0) realize a Robertson–Walker
Big Bang compatible with Penrose’s hypothesis that the initial singularity must have a vanish-
ing four-dimensional Weyl curvature tensor. A solar-mass black hole has a Bekenstein–Hawking
entropy of ∼ 1021 per baryon. By Penrose’s estimate, with 1080 baryons in our universe, thermal-
ization of gravitational degrees of freedom at the initial hot Big Bang would imply an entropy of
10123. “Our extraordinarily special Big Bang” with low entropy [8–11] emerges naturally from the
ground state of HPhys in the era of Cotton–York dominance; and the Second Law thermodynamic
“arrow of time” and “gravitational arrow of intrinsic time” (of increasing volume) point in the same
direction.

The vanishing of both the traceless momentric and the Cotton–York tensor implies that the trace
of the momentum π ∝ H̄ also vanishes; the extrinsic curvature is thus totally absent, which is the
junction condition needed for Euclidean continuation of the metric (for instance, continuation to
Euclidean S4 at the conformally flat S3 section at the throat of the Lorentzian de Sitter metric). The
quantum context may be in agreement with the Hartle–Hawking “no-boundary proposal” for the
wavefunction of the universe [12], but it should be noted that the intrinsic time framework discussed

3 The commutator is a scalar density of weight two, with the density weight carried by limx→y δ (x − y)

and the Levi–Civita tensor density from C̃ i j ∝ ε̃

(
imn∇m R j

n

)
. Contraction over spatial indices of ε̃imn with qmn

and Rmn , and εi jk∇i∇ j∇k all vanish, the latter due to the Bianchi identity. Explicit computations verify the
vanishing of the commutator.

4 Cotton–York dominance at very early times is robust against the inclusion in V of the usual Yang–
Mills fields or fermionic matter, because the corresponding Hamiltonian densities contain positive powers of
q (T ) ∼ e3(T −Tnow). Conventional scalar field potentials also contain positive powers of q, but the weight two
kinetic term π̃2

φ is independent of q. However, this does not change the criterion of vanishing momentric and
Cotton–York tensor for the classical lowest energy state, which then requires π̃2

φ = 0 as well.
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here already allows a continuation of β in HPhys to imaginary values and Euclidean partition func-
tions; moreover, from the formula of the emergent lapse function [3], imaginary β leads to emergent
semi-classical spacetimes which are Euclidean in signature.

The Cotton–York interaction is introduced through the extension ˆ̄π i
j → egW ˆ̄π i

j e
−gW = Q̂i

j ; thus

Q̂i
j and Q̂†i

j respectively annihilate the state e±gW |0〉. Moreover, both these states are annihilated

by H̄ because Q̂†i
j Q̂ j

i = Q̂i
j Q̂† j

i , due to the absence of Cotton–York ZPE. So any linear combi-
nation AegW |0〉 + Be−gW |0〉 = N cosh[g (W − Wo)]|0〉 is a zero energy state. From the quantum
perspective, the classical conformally flat configuration with vanishing Cotton–York tensor is the
extremum of W , and thus precisely a saddle point for the ground state wavefunction �0[q̄i j ] =
N cosh[g (W − Wo)]〈q̄i j |0〉 (with the simplest choice of constant 〈q̄i j |0〉). Expanding W about the
saddle point δW

δq̄i j
= C̃ i j = 0 leads to

W [q̄i j ] − Wo = W
[
�

(
C̃ i

j = 0
)]

+ 1

2

∫
d3x

∫
d3 y δq̄i j (x) Hi jkl (x, y)

∣∣∣C̃m
n =0 δq̄kl (y)

+ · · · − Wo,

(9)

wherein Hi jkl (x, y) = δ2W
δq̄i j (x)δq̄kl (y)

is the Hessian; it is natural to choose Wo to cancel the zeroth-

order term W
[
�

(
C̃ i

j = 0
)]

, which is the Chern–Simons functional of a conformally flat connec-

tion.5 Wo = W
[
�

(
C̃ i

j = 0
)]

is a topological entity, invariant under infinitesimal variations of the
metric. The ground state will thus contain primordial quantum fluctuations which can be stud-
ied. For instance, the Hessian, which for a flat metric is −1

2δ jkεiml∂m∂2δ (x − y), is the inverse
of the two-point correlation function, and Cotton–York dominance would thus be compatible with
∼1/k3 behavior. With |N |−2 = ∫

[Dq̄] cosh2[g (W − Wo)], the wavefunction is normalized, but its
definition involves the computation of

∫
[Dq̄]e±2g[(W−Wo)] which are just partition functions of

Chern–Simons actions.6

5 The Chern–Simons functional is not bounded, because under a large SL (3, R) transformation it shifts
by a value proportional to the winding number of the transformation. Since W appears in the wavefunction
not as a phase factor, but as an exponential factor, quantization of the coupling constant cannot cure this
problem. Instead, the natural choice is to cancel the contribution of the winding number with the Chern–
Simons functional of a flat connection (see, for instance, Ref. [13]). Two configurations, � and �gn , related by

transformation gn with winding number n will then produce the same value W [�gn ] − W
[
�gn

(
C̃ i

j = 0
)]

=
W [�] − W

[
�

(
C̃ i

j = 0
)]

, and the wave function will be periodic under gn .
6 The partition function of the total WT can be defined, in the sense that the combined three-dimensional

Einstein–Hilbert and Chern–Simons actions are renormalizable even though the dimension of b is 1
L . In fact,

the Cotton–York Chern–Simons theory is the UV completion of the Einstein–Hilbert action. Perturbing about
the flat metric (which is an extremum of the combined action) yields the Hessian for transverse traceless δq̄i j

modes as
(
bδikδ jl − gδ jkεiml∂m

)
∂2δ (x − y). At large momenta, Chern–Simons theory dominates the propa-

gator with 1/k3 behavior, which signifies renormalizability, as loop integrals are over d3k and the vertices are
at most cubic in k; while at low momenta the Einstein–Hilbert 1/k2 behavior dominates. Saddle point steep-
est descent computation about the extremum of W is a good approximation in the event of large g (i.e. the
limit of small coupling, 1√

g , in the vertices in Chern–Simons perturbation theory), and the quadratic term of

the Hessian will be the main contribution, so we expect 1/k3 two-point correlation functions in primordial
quantum fluctuations, tempered by 1/k2 behavior of Einstein’s theory for small enough values of k to make b

gk
significant.
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6. Emergence of Einstein–Hilbert gravity

Ricci curvature terms become increasingly important in the potential after the initial era of
Cotton–York dominance. They can be introduced in a manner which preserves the underlying struc-
ture which regulates the Hamiltonian by extending the Chern–Simons action with 3dDI invariants
of the spatial metric. This not only guarantees 3dDI invariance, but also makes the Hamiltonian
density the square root of a (semi-)positive definite and self-adjoint object Q̂†i

j Q̂ j
i and ensures

the preservation of all these properties even under renormalization of the coupling constants. In
increasing order of spatial derivatives, these invariants are �

∫ √
qd3x , E H = b

∫ √
q Rd3x , and

the Chern–Simons functional of the affine connection with dimensionless coupling constant. Even
higher-derivative curvature invariants will come along with super-renormalizable dimensional cou-

pling constants, while the cosmological constant volume term commutes with ˆ̄π i
j due to the traceless

projector Ē i
j(mn). To wit, only the Einstein–Hilbert action in three dimensions and the Chern–Simons

functional are relevant, i.e. total WT = g
4

∫
ε̃i jk

(
�̄l

im∂ j �̄
m
kl + 2

3 �̄l
im�̄m

jn�̄
n
kl

)
d3x + b

∫ √
q Rd3x .

This leads to

Q̂i
j = eWT ˆ̄π i

j e
−WT = �

i
Ē i

j(mn)

[
δ

δq̄mn
− δWT

δq̄mn

]
= �

i
Ē i

j(mn)

δ

δq̄mn
+ ib�

√
q R̄i

j + ig�C̃ i
j , (10)

wherein (again due to the Ē i
j(mn) projector) only the traceless part of the Ricci tensor remains. The

Hamiltonian density is then

H̄ =
√

Q̂†i
j Q̂ j

i =
√

ˆ̄π† j
i

ˆ̄π i
j + �2

(
gC̃i

j + b
√

q R̄i
j

) (
gC̃ j

i + b
√

q R̄ j
i

)
+

[
ˆ̄π i

j , ib�
√

q R̄ j
i

]
, (11)

wherein the ZPE from incorporating the Einstein–Hilbert action in WT is
[ ˆ̄π i

j , ib
√

q�R̄ j
i

] =
− 5

12b�
2δ (0)

√
q

(
5R − 9

ε

)
.7 Remarkably, the potential for Einstein’s theory, which is the Ricci

scalar, and a (positive) c-number term emerge. This means that the simple Hamiltonian density√
Q̂†i

j Q̂ j
i (with all its aforementioned advantages) already contains Einstein’s GR with a cosmo-

logical constant. Furthermore, R̄i
j and the Cotton–York tensor only appear in the higher-curvature

higher-derivative combination
(

gC̃ j
i + a

√
q R̄ j

i

) (
gC̃i

j + a
√

q R̄i
j

)
—these “non-GR” terms are

automatically absent in homogeneous FLRW cosmology (that the Weyl curvature hypothesis holds
in the Cotton–York era has been addressed), and also in constant curvature slicings of Painlevé–
Gullstrand solutions of black holes [14]. Consequently, except for Cotton–York preponderance at
very early times, Einstein’s GR dominates at low curvatures and long wavelengths in a theory in
which “four-dimensional symmetry is not a fundamental property of the physical world” [15].

7 Explicit computations yield
[ ˆ̄π i

j , ib
√

q�R̄ j
i

] = −5b�
2√q

(
δ(0)

3 R + 1
2∇2δ (0)

)
. The heat kernel,

K (ε; x, y) with limε→0 K (ε; x, y) = δ (x − y), presents, in the coincidence limit and with infinites-
imal ε, the means to regularize ∇2δ (0) for generic metrics. In terms of Seeley–DeWitt coefficients
bn , 2σ (x, y) the square of the geodesic length, �V the Van Vleck determinant, K (ε; x, y) =
(4πε)−3/2 �

1/2
V (x, y)

√
q (y)e−σ(x,y)/2ε

∑∞
n=0 bn

(
x, y; ∇2

)
εn , wherein ε is of dimension L2. Thus the

heat kernel equation implies ∇2 K (ε; x, y) = ∂K (ε;x,y)

∂ε
→ − (

3
2ε

− b1
)
δ (0) in the x = y and infinitesimal ε

limit. The Seeley–DeWitt coefficient b1 = R
6 yields

[ ˆ̄π i
j , ib

√
q�R̄ j

i

] = − 5
12 b�

2δ (0)
√

q
(
5R − 9

ε

)
.
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7. Quantum geometrodynamics redux

Local SL (3, R) transformations of q̄kl are generated through U † (α) q̄kl (x) U (α) =
(

e
α(x)

2

)m

k

q̄mn (x)
(

e
α(x)

2

)n

l
, wherein U (α) = e− i

�

∫
αi

j π̄
j

i d3 y [5], while the generator of spatial diffeomor-

phisms for the momentric and unimodular spatial d.o.f. is effectively Di = −2∇ j π̄
j

i , with smearing∫
N i Di d3x = ∫ (

2∇ j N i
)
π̄

j
i d3x after integration by parts.8 The action of spatial diffeomorphisms

can thus be subsumed by specialization to αi
j = 2∇ j N i , with the upshot that SL (3, R) transforma-

tions which are not spatial diffeomorphisms are parametrized by αi
j complement to 2∇ j N i . Given a

background metric q B
i j = q

1
3 q̄ B

i j , this complement is precisely characterized by the choice of trans-

verse traceless (TT) parameter (αTT)i
j := q B

jkα
(ik)

Phys, because the condition ∇ j
B (αTT)i

j = 0 excludes

non-trivial N i through ∇2
B N i = 0 if (αTT)i

j were of the form 2∇B
j N i

(
the label B denotes the con-

nection of q B
i j

)
. TT conditions impose four restrictions on the symmetric α

(i j)
Phys (x), leaving exactly

two free parameters. The action of UPhys (αTT) = e− i
�

∫
(αTT)i

j π̄
j

i d3x (which is thus local SL (3, R)

modulo spatial diffeomorphism) on any 3dDI wavefunction would result in an inequivalent state.
The caveat is that TT conditions require a particular background metric to be defined. However,
in Ref. [16] a basis of infinitely squeezed states was explicitly realized by Gaussian wavefunc-

tionals �[q̄]q B ∝ exp
[
−1

2

∫
f̃ε

(
q̄i j − q̄ B

i j

)
Ḡi jkl

B

(
q̄kl − q̄ B

kl

)
d3x

]
. 3dDI is recovered in the limit

of zero Gaussian width with divergent limε→0 f̃ε → δ (0). These localized Newton–Wigner states
are infinitely peaked at q B

i j , which can be deployed to actualize the TT conditions. The action of
UPhys (αTT) on these states would thus generate two infinitesimal local physical excitations at each
spatial point.

In the preceding discussions, the entity δ (0) that denotes the three-dimensional coincidence limit,
limx→y δ (x − y), was left untouched, with the understanding that it can be regularized, for instance,
by normalized Gaussians of infinitesimal but non-zero width. However, the underlying SU (3) struc-
ture already provides unambiguous guidance on how to regularize the theory. The Hamiltonian
assumes the elegant form

HPhys = �

∫ √(
Q A

)†
Q A δ (0)√

2β
d3x, Q A := eWT T A (x)e−WT , (12)

wherein δ(0)
β

d3x is a dimensionless volume element, its divergence to be absorbed by renormalization

of β.9 With the cancelation of � on both sides of the Schrödinger equation, our universe is described
by a fundamental equation with dimensionless Hamiltonian and intrinsic time. What is paramount
to causality is not the actual dimension of time (an exemplar is the intrinsic time interval measured
with dimensionless redshift in FLRW cosmology), but the sequence and ordering in time. Even as
� will continue to leave its imprints in physics in the conversion factor between SU (3) generators

8 In the full diffeomorphism generator, Hi = −2qik∇ j π̃
k j = Di − 2

3∇i π̃ , the last term separately generates

diffeomorphisms of
(

ln q
1
3 , π̃

)
and commutes with the momentric and spatial unimodular d.o.f.

9 It is conventional for the spatial label x to carry the dimension of length, even though it is non-
dynamical and a mere dummy variable to be integrated over. But it makes more physical sense to take
partial derivatives, and calculate curvatures, with respect to a dimensionless variable X = x/L . To wit,
WT = gW [� (X)] + (bL)

∫ √
q (X)R (X) d3 X , with dimensionless coupling constant (bL); furthermore,

δ(0)

β
d3x = 1

β
[limy→x δ (y − x)]d3x = 1

β
[limY→X δ (Y − X)]d3 X .
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T A and the momentric (hence the momentum of the gravitational field), unification of gravitation
and quantum mechanics comes with the demotion of its elementary significance. With dimensionless
fundamental variables, the CR are:10[

q̄i j (x) , q̄kl (y)
] = 0,[

q̄i j (x) , T A (y)
] = i

2

( (
λA

)k

i
q̄k j +

(
λA

)k

j
q̄ki

)δ (x − y)

δ (0)
,

[
T A (x) , T B (y)

] = i f AB
C T C δ (x − y)

δ (0)
.

(13)

Quantum essence is still embodied in the non-commutativity, but Planck’s constant is absent.
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