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It is shown that the spin-polarized condensate appears in quark matter at high baryon density
and low temperature due to the tensor-type four-point interaction in the Nambu–Jona-Lasinio-
type model as a low-energy effective theory of quantum chromodynamics. It is indicated within
this low-energy effective model that the chiral symmetry is broken again by the spin-polarized
condensate on increasing the quark number density, while chiral symmetry restoration occurs,
in which the chiral condensate disappears at a certain density.
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1. Introduction

One of the recent topics of interest in the physics of the strong interaction, namely, in the physics
governed by quantum chromodynamics (QCD), has been to clarify the structure of the phase diagram
on the plane with respect to baryon chemical potential and temperature (see, e.g., Ref. [1]). In the
region of finite temperature and zero baryon chemical potential, lattice QCD simulation works and
reliable calculations based on first principles have been performed until now. However, in the region
of low temperature and finite baryon chemical potential, the possibility of various phases, such as the
color superconducting phase [2–4], quarkyionic phase [5], inhomogeneous chiral-condensed phase
[6–8], and so on, has been indicated.

In heavy-ion collision experiments such as the relativistic heavy-ion collider (RHIC) experiment,
it is believed that the quark–gluon phase is realized. Also, in the large hadron collider (LHC)
experiment, it is expected that more extreme states of QCD with finite temperature and density
and/or a strong magnetic field may be created in the quark–gluon phase. It is interesting to under-
stand what phases arise under extreme conditions. The quark–gluon phase under extreme conditions
may be realized in the inner core of compact stars such as neutron stars, magnetars, and quark stars,
if they exist. Therefore, the investigation of quark matter at low temperature and high density is also
important to understand compact star objects.
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In our previous papers, it has been shown that a spin-polarized phase may appear and be realized
instead of the color superconducting phase in cases of both two [9] and three flavors [10] in the region
with finite quark chemical potential at zero temperature. It is also interesting to investigate possible
phases in the region with high density and low temperature from the viewpoint of the physics of com-
pact stars, in particular, the structure of the inner cores of compact stars. It has also been shown in our
recent work [11] that there is a possibility of the existence of a strong magnetic field on the surface
of compact stars if there exists a quark spin-polarized phase, which leads to the spontaneous magne-
tization of quark matter due to the anomalous magnetic moment of the quark, while only symmetric
quark matter has been considered. If spin polarization really leads to spontaneous magnetization in
the mechanism developed in the previous paper [11], it is a possible candidate for the origin of the
strong magnetic field in so-called magnetars [12–14].

In this paper, which follows Refs. [15] and [9], the possibility of the quark spin-polarized phase
is investigated in the region of finite quark chemical potential and finite temperature by using
the Nambu–Jona-Lasinio (NJL) model [16–19] with the tensor-type four-point interaction between
quarks [20], instead of the pseudovector-type four-point interaction [21,22]. As for the tensor-type
four-point interaction, this interaction term was also introduced to investigate meson spectroscopy,
in particular for vector and axial-vector mesons [23]. As another application, the dynamic prop-
erties of vector mesons were investigated in the extended NJL model including the tensor-type
interaction [24]. Also, the chiral condensate and the quark spin polarization, namely, the tensor
condensate, are considered simultaneously in the case with only one flavor instead of the color
superconductor [25].

This paper is organized as follows: In the next section, a recapitulation of the NJL model with
the tensor-type four-point interaction between quarks is given; in this model, the chiral condensate
and quark spin-polarized condensate are considered simultaneously. In Sect. 3, the thermodynamic
potential at zero temperature is introduced under the mean-field approximation. In Sect. 4, the ther-
modynamic potential at finite temperature and density is given and derived. A derivation of the
thermodynamic potential at zero temperature from that at finite temperature is given in Appendix A.
Also, the effective potential is evaluated in Appendix B. In Appendix C, the analytic calculation for
the thermodynamic potential is presented. In Sect. 5, the numerical results are given through the
calculation of the thermodynamic potential under various temperatures and quark chemical poten-
tials. The results are summarized in a phase diagram on the plane with respect to the quark chemical
potential and temperature, in which the possible phases, the position of the phase boundary, and the
order of the phase transition are shown, apart from the color superconducting phase. In Appendix D,
an idea introducing the tensor-type four-point interaction between quarks, which plays an essential
role in this paper, is given from the viewpoint of the two-gluon exchange process in QCD. The last
section is devoted to a summary and concluding remarks.

2. NJL model with a tensor-type four-point interaction

Let us consider the NJL-model Lagrangian density with a tensor-type four-point interaction.
The Lagrangian density with su(2)-flavor symmetry can be expressed as

L = L0 + LS + LT, (2.1)

L0 = ψ̄
(
iγ μ∂μ − m0

)
ψ, (2.2)
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LS = GS

{(
ψ̄ψ

)2 +
(
ψ̄iγ 5�τψ

)2
}
, (2.3)

LT = −GT

4

{(
ψ̄γ μγ ν �τψ) · (ψ̄γμγν �τψ)+

(
ψ̄iγ 5γ μγ νψ

) (
ψ̄iγ 5γμγνψ

)}
, (2.4)

where m0 is the current quark mass for up- and down-quarks and the components of �τ are the Pauli
matrices for the isospin. It is known that these current quark masses are slightly different for each
flavor, but we have used approximately the same value. The first two terms, L0 + LS, are the original
NJL-model Lagrangian density. In this paper LT is added into the model, according to the Fierz
transform. Then, the spin matrix appears from LT when μ = 1, ν = 2 or μ = 2, ν = 1 as follows:

Σ3 = −iγ 1γ 2 =
(
σ3 0
0 σ3

)
.

Since we use the mean-field approximation, we get the following mean-field Lagrangian density:

LMFA = ψ̄
(
iγ μ∂μ − m0

)
ψ + GS

{
2
〈
ψ̄ψ

〉 (
ψ̄ψ

)− 〈ψ̄ψ 〉2}
+ GT

2

{
2
〈
ψ̄Σ3τ3ψ

〉 (
ψ̄Σ3τ3ψ

)− 〈ψ̄Σ3τ3ψ
〉2}
, (2.5)

where 〈· · · 〉 means vacuum expectation value. Here τ3 is the third component of the Pauli matrix for
isospin. When it operates on ψ for the up-quark (down-quark), the matrix changes into 1 (−1) as its
eigenvalue. Thus we can safely express ψ̄Σ3τ3ψ as follows:

ψ̄Σ3τ3ψ −→ ψ̄Σ3ψτ f ,

where τ f = 1 (−1) when f = up-quark (down-quark). Let us define the following quantities:

F ≡ −GT
〈
ψ̄Σ3ψ

〉
, M ≡ −2GS

〈
ψ̄ψ

〉
, Mq ≡ m0 + M.

F and M are especially important quantities, because if F and/or M are not equal to zero, then spin
polarization and/or chiral condensation occur. Here, Mq is just a constituent quark mass. Substituting
these quantities into Eq. (2.5), we convert LMFA into

LMFA = ψ̄
(
iγ μ∂μ − Mq

)
ψ − F

(
ψ̄Σ3ψ

)− M2

4GS
− F2

2GT
. (2.6)

Let us switch from the Lagrangian formalism to the Hamiltonian formalism by Legendre
transformation. First we must obtain the canonical momentum πα , πα = ∂LMFA/∂ψ̇α = iψ†

α ,
where α means an index for the spinor and isospin. We, therefore, get the Hamiltonian density:

HMFA = παψ̇α − LMFA

= ψ̄
(
−i �γ · �∇ + Mq

)
ψ + F

(
ψ̄Σ3ψ

)+ M2

4GS
+ F2

2GT
. (2.7)

Thus, the Hamiltonian is expressed as

HMFA =
∫

d3x ψ†γ 0
(
−i �γ · �∇ + Mq + FΣ3

)
ψ + V

M2

4GS
+ V

F2

2GT
,

where V is the volume of this system. We transform ψ(x) by a Fourier transformation as
ψ(x) = ∫ d3p/(2π)3 · ψ̃(p)ei �p·�x . Substituting this into HMFA, we obtain

HMFA =
∫

d3 p

(2π)3
ψ̃†γ 0 ( �γ · �p + Mq + FΣ3

)
ψ̃ + V

M2

4GS
+ V

F2

2GT
. (2.8)
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What we must do is to diagonalize HMFA. The nondiagonal terms are

hMFA ≡ γ 0 ( �γ · �p + Mq + FΣ3
)

=
(

Fσ3 + Mq �p · �σ
�p · �σ −Fσ3 − Mq

)

=

⎛
⎜⎜⎜⎝

F + Mq 0 p3 p1 − i p2

0 −F + Mq p1 + i p2 −p3

p3 p1 − i p2 −F − Mq 0
p1 + i p2 −p3 0 F − Mq

⎞
⎟⎟⎟⎠.

Since hMFA is a Hermitian matrix, it is diagonalized by a unitary matrix. The eigenvalues are
obtained as

± E (η)�p = ±
√

p2
3 +

(√
p2

1 + p2
2 + M2

q + ηF

)2

, (2.9)

where η = ±1.

3. Thermodynamic potential at zero temperature

Next, we introduce a quark chemical potential μ and a number density operator N in order to discuss
a finite-density system at zero temperature. The thermodynamic potential is defined as follows:

Φ = HMFA − μN . (3.1)

The next step is to calculate the expectation value. Since we consider the zero-temperature system in
this section, the system in which quasiparticles are degenerate is treated. Hence, we must sum over
momenta from zero to the single-quasiparticle energy equal to the chemical potential. Sandwiching
with a “bra” and “ket”, we obtain

Φ = 1

V
〈F.D.|

(
HMFA − μ

∫
d3x N

)
|F.D.〉

= 1

V

E (η)�p ≤μ, �p2≤Λ2∑
�p,η,τ,α

(
E (η)�p − μ

)
+ M2

4GS
+ F2

2GT
,

where |F.D.〉 means the degenerate Fermi gas constituted by quasiparticles and Λ is a three-
momentum cutoff parameter for the integration over momenta. Here, τ and α are indices for isospin
and quark color, respectively. The upper limit of integration is imposed by two conditions, which are
E (η)�p ≤ μ and �p2 ≤ Λ2. We would like to discuss spin polarization and chiral condensate simulta-
neously. However, the above expression does not have a contribution from the Dirac sea. Since the
chiral condensate occurs by the effect of the Dirac sea, we must add its contribution. Thus, we get

Φ(M, F, μ) = 1

V

E (η)�p ≤μ, �p2≤Λ2∑
�p,η,τ,α

(
E (η)�p − μ

)
− 1

V

�p2≤Λ2∑
�p,η,τ,α

E (η)�p + M2

4GS
+ F2

2GT
, (3.2)

where the second term represents the contribution from the Dirac sea (negative energy sea).

We change the sum 1
V

∑
�p into the integration

∫ d3 p
(2π)3

. Then, the thermodynamic potential can
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be expressed as

Φ(M, F, μ) = Φ1 +Φ2 +Φ3 +Φ4, (3.3)

where

Φ1(F,M, μ) =
∑
τ,α

∫
Γ1

d3 p

(2π)3

⎧⎨
⎩
√

p2
3 +

(√
p2

1 + p2
2 + M2

q + F

)2

− μ

⎫⎬
⎭,

Γ1 =
{

E (+1)
�p ≤ μ, �p2 ≤ Λ2

}
(3.4)

Φ2(M, F, μ) =
∑
τ,α

∫
Γ2

d3 p

(2π)3

⎧⎨
⎩
√

p2
3 +

(√
p2

1 + p2
2 + M2

q − F

)2

− μ

⎫⎬
⎭,

Γ2 =
{

E (−1)
�p ≤ μ, �p2 ≤ Λ2

}
(3.5)

Φ3(M, F, μ) = −
∑
η,τ,α

∫
Γ3

d3 p

(2π)3

√
p2

3 +
(√

p2
1 + p2

2 + M2
q + ηF

)2

,

Γ3 =
{

�p2 ≤ Λ2
}

(3.6)

Φ4(M, F, μ) = M2

4GS
+ F2

2GT
. (3.7)

Here,Φi (i = 1, 2, 3, 4)means, respectively, the contributions from positive energy for η = +1, pos-
itive energy for η = −1, vacuum, and the mean field, respectively. Γi (i = 1, 2, 3) is the domain of
integration over momenta. Since these integrands do not depend on τ or α, the summations over τ
and α give factors 2 and 3, respectively.

4. Thermodynamic potential at finite temperature and density

We have discussed the thermodynamic potential at zero temperature in the previous section. In this
section let us consider the thermodynamic potential at finite temperature. We define a thermodynamic
potential at finite temperature, Ω(M, F, μ, T ), as follows:

Ω
(
M, F, μ, T

) ≡ H′
MFA − μ(NP − NAP)+ Vvacuum − T S, (4.1)

H′
MFA ≡

∑
�p,η,τ,α

E (η)�p
(

n(η)�p + n̄(η)�p
)

+ M2

4GS
+ F2

2GT
,

NP ≡
∑

�p,η,τ,α
n(η)�p , NAP ≡

∑
�p,η,τ,α

n̄(η)�p ,

n(η)�p = 1

1 + exp
((

E (η)�p − μ
)
/T
) , n̄(η)�p = 1

1 + exp
((

E (η)�p + μ
)
/T
) ,

Vvacuum ≡ −
∑

�p,η,τ,α
E (η)�p ,
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where T means the temperature of the system and n(η)�p and n̄(η)�p are the distribution functions for the
particle and antiparticle, respectively. The entropy S is given as follows:

S = −
∑

�p,η,τ,α

{
n(η)�p log n(η)�p +

(
1 − n(η)�p

)
log
(

1 − n(η)�p
)

+ n̄(η)�p log n̄(η)�p +
(

1 − n̄(η)�p
)

log
(

1 − n̄(η)�p
) }
.

Using the following identities:

n(η)�p log n(η)�p = −n(η)�p ×
E (η)�p − μ

T
− n(η)�p log

(
1 − n(η)�p

)
,

n̄(η)�p log n̄(η)�p = −n̄(η)�p ×
E (η)�p + μ

T
− n̄(η)�p log

(
1 − n̄(η)�p

)
,

the above Ω can be recast into

Ω = −
∑

�p,η,τ,α

⎧⎨
⎩E (η)�p + T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠
⎞
⎠+ T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠
⎞
⎠
⎫⎬
⎭

+ M2

4GS
+ F2

2GT
.

Let us change the summation over momenta into integration, and then let us introduce polar
coordinates, p1 = pT cos θ, p2 = pT sin θ , so as to integrate. The domain of integration is obtained
as follows:

−
√
Λ2 − p2

T ≤ p3 ≤
√
Λ2 − p2

T , 0 ≤ pT ≤ Λ.

After integrating over θ and summing over τ and α, we get the final form:

Ω(M, F, μ, T ) = − 3

π2

∑
η

∫ Λ

0
dpT

∫ √
Λ2−p2

T

0
dp3 pT

×
⎧⎨
⎩E (η)�p + T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠
⎞
⎠+ T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠
⎞
⎠
⎫⎬
⎭

+ M2

4GS
+ F2

2GT
. (4.2)

5. Numerical results and discussions

In this section we would like to discuss the thermodynamic potential at zero/finite temperature
numerically. In order to evaluate it we use the three-momentum cutoff parameter and coupling con-
stants in Table 1. Here, we adopt the strength of the tensor interaction GT as a rather small value
compared with the one used in our previous paper. The reason why we take GT as a rather small
value, 11.0 GeV, is that the vacuum polarization, namely, the contribution of the negative energy sea,
is taken into account. A detailed discussion of this effect has already been given in Appendix B in
Ref. [15]. Here, in this section, we show numerical results in the case of the chiral limit, m0 = 0.0.
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Table 1. Parameter set.

Λ/GeV m0/GeV GS/GeV−2 GT /GeV−2

0.631 0.0 5.5 11.0

Fig. 1. The thermodynamic potential with F = 0 is depicted as a function of the constituent quark mass M in
various quark chemical potentials.

Fig. 2. The thermodynamic potential with M = 0 is depicted as a function of the spin-polarized condensate
F in various quark chemical potentials.

5.1. Thermodynamic potential at zero temperature

Let us discuss the thermodynamic potential at zero temperature. First we consider the chiral
condensate M and the spin polarization F separately.

Figure 1 shows the thermodynamic potential in the special case where F = 0. When the chemical
potential has a value below 0.32 GeV and above 0.35 GeV, the thermodynamic potential has only
one minimum. On the other hand, when μ = 0.33 ∼ 0.34 GeV, the thermodynamic potential has two
local minima. This indicates that the phase transition to chiral condensate is of first order.

Figure 2 shows the thermodynamic potential for M = 0. When the chemical potential is small,
the spin-polarized phase does not appear. However, when the chemical potential μ has a value
above 0.42 GeV, the spin-polarized phase appears. This figure shows that the phase transition to spin
polarization is of second order.

Next, let us consider M and F simultaneously. In Fig. 3, the contour map for the thermodynamic
potential is depicted with various quark chemical potentials. The horizontal and vertical axes
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Fig. 3. The contour map of the thermodynamic potential is depicted as a function of the constituent quark
mass M and the spin-polarized condensate F in various quark chemical potentials. The horizontal and vertical
axes represent M and F , respectively. Darker colors represent a lower thermodynamic potential.

represent the constituent quark mass M and the spin-polarized condensate F , respectively. When
μ varies from 0 GeV to 0.32 GeV, the chiral-condensed phase arises. However, when μ reaches
0.35 GeV, chiral symmetry is restored. If μ = 0.43 GeV, the spin-polarized phase appears. These
contour maps indicate that the two phases, the chiral-condensed and spin-polarized phases, do not
coexist.

Here, two points should be mentioned. One is about the effect of GT , namely, the coupling strength
of the tensor-type interaction. As has already been mentioned at the beginning of this section, a
detailed discussion about GT has already been given in Appendix B in Ref. [15]. However, let us
demonstrate the effect of GT for the spin polarization. Figure 4 shows the thermodynamic poten-
tial with M = 0 at various values of GT , namely, GT /GS = 1, 5, 2.0, and 2.5, respectively. As the
coupling strength GT is increased, the critical chemical potential of the phase transition decreases.

8/23

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2016/5/053D

02/2606847 by guest on 24 April 2024



PTEP 2016, 053D02 H. Matsuoka et al.

Fig. 4. The thermodynamic potentials with M = 0 and T = 0.01 are depicted at various ratios of GT /GS .
The ratios GT /GS = 1.5, 2, and 2.5 mean GT = 8.25, 11.0, and 3.75 GeV−2, respectively.

For example, at small values of GT such as GT /GS = 1.5, the phase transition occurs around
μ = 0.54 GeV. On the other hand, at large GT , GT /GS = 2.5, the phase transition occurs around
μ = 0.33 GeV. In this paper, we adopt a moderate value GT /GS = 2.0 for discussions.

Secondly, we mention the reason why the spin polarization occurs at large chemical potential.
At zero temperature, the spin-polarized phase is actually realized in our model. It is easy to under-
stand how the spin-polarized phase appears. Neglecting the contribution of the chiral condensate, the
energy E of the system under consideration can be expressed by using the quark chemical potential as

E =
∫ μ

μ
∂N

∂μ
dμ+ F2

2GT

= μN −
∫

N dμ+ F2

2GT
. (5.1)

Thus, the thermodynamical potential �(= E − μN ) is obtained as

� = E − μN

= −
∫

N dμ+ F2

2GT

= −
∫

dμ
∑
η,τ,α

∫
d3p

(2π)3
θ
(
μ− E (η)�p

)
+ F2

2GT
, (5.2)

where θ(x) represents the Heaviside step function. Let us consider the normal quark matter in which
F = 0. In this case, the above-derived thermodynamical potential can be calculated easily as

� = − μ4

2π2 . (5.3)

On the other hand, in the case F �= 0, we can also calculate the thermodynamic potential analytically;
this was presented in Ref. [20]. For simplicity, let us consider the case F > μ. For F > μ, E (+)�p does
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not contribute to the three-momentum integration. In this case, by the existence of the theta function,
the integration has a finite value in E (−)�p ≤ μ:

E (−)�p ≡
√

p2
3 +

(
F −

√
p2

1 + p2
2

)2

≤ μ. (5.4)

The equality in the above expression represents the formula of a torus in which the major radius is
F and the small radius is μ. Thus, the Fermi surface has the form of a torus. Therefore, the momen-
tum integral

∫
d3pθ

(
μ− E (−)�p

)
means the volume of the Fermi “torus”, where the volume gives

2π2μ2 F
(=πμ2 · 2πF

)
. Then, we obtain the thermodynamical potential in the large-μ region as

� = − 3

4π3

∫ μ

dμ2π2μ2 F + F2

2GT

= −μ
3 F

2π
+ F2

2GT
. (5.5)

The “gap equation” for F is derived from

∂�

∂F
= −μ

3

2π
+ F

GT
= 0, thus, F = GTμ

3

2π
. (5.6)

Inserting the above-derived F into the thermodynamical potential, we finally obtain

� = −GTμ
6

8π2 . (5.7)

For small chemical potential, namely, at low quark number density, normal quark matter is realized
because the thermodynamic potential has order μ4. On the other hand, for large chemical potential,
namely, at high quark number density, the thermodynamical potential with the order of μ6 over-
comes the normal quark matter with the order of μ4. It may be concluded that the appearance of
the spin-polarized phase is due to the effect of the volume of the phase space. Thus, at high density,
the spin-polarized phase is realized absolutely.

5.2. Thermodynamic potential at finite temperature

Let us consider the thermodynamic potential at finite temperature. First, let us treat the two cases
without M or F separately. Figure 5 shows the thermodynamic potential at finite temperature for
F = 0. If the temperature T is not so high, the chiral-condensed phase is realized. However, in the
high-temperature region, the chiral-condensed phase disappears. It should be noted that, in the cases
with μ = 0 GeV and μ = 0.2 GeV, the phase transition is of second order, while the phase transition
is of first order in the case μ = 0.32 GeV.

Secondly, we discuss the case for M = 0. In Fig. 6, it is shown that the spin-polarized phase is
realized in the low-temperature region only. If temperature rises, the spin polarization disappears
rapidly. In this case, the phase transition from the spin-polarized phase to the normal phase is of
second order.

Finally, let us consider M and F simultaneously. It is shown in Fig. 7 that chiral symmetry is
broken for small chemical potential and low temperature. However, if the chemical potential or
temperature becomes high, chiral symmetry is restored. In the large chemical potential and low-
temperature region, the spin-polarized condensate appears. However, for higher temperatures, it
disappears. According to these contour maps, it may be concluded that the two phases, namely, the
chiral-condensed phase and the spin-polarized phase, do not coexist at finite temperature.
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Fig. 5. The thermodynamic potentials with F = 0 are depicted at various temperatures T with the chemi-
cal potential μ = 0 GeV, 0.2 GeV, and 0.32 GeV, respectively. The horizontal and vertical axes represent the
constituent quark mass M and the thermodynamic potential Ω(M, μ, T ), respectively.

Fig. 6. The thermodynamic potentials with M = 0 are depicted at various temperatures T with the chemical
potential μ = 0.41 GeV, 0.42 GeV, and 0.44 GeV, respectively. The horizontal and vertical axes represent the
spin-polarized condensate F and the thermodynamic potential Ω(F, μ, T ), respectively.

5.3. Phase diagram on the T –μ plane

In summary, it is possible to show the regions of the chiral-condensed phase and the spin-polarized
phase on a plane with temperature T and quark chemical potential μ and also to draw the phase
boundary indicating the order of phase transition under the chiral limit, m0 = 0. In Fig. 8, the phase
diagram in this model is presented. As is shown in this phase diagram, the chiral-condensed phase
exists on the left-hand side of the T –μ plane and the spin-polarized phase exists on the right. It is
indicated that, for the boundary of the chiral-condensed and normal phases, there is a critical end-
point for the phase transition near μ = 0.31 GeV and T = 0.046 GeV. On the other hand, the phase
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Fig. 7. The contour maps of the thermodynamic potential are depicted as a function of the constituent
quark mass M and the spin-polarized condensate F at various quark chemical potentials and temperatures.
The horizontal and vertical axes represent M and F , respectively.

M    0

M = 0 ,  F = 0

F    0

Fig. 8. The phase diagram in our model. The horizontal and vertical axes represent the quark chemical potential
and the temperature, respectively.
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transition from the normal quark phase to the spin-polarized phase is always of second order and
there is no endpoint.

6. Summary and concluding remarks

In this paper, it has been shown that the spin-polarized phase appears in the region with a large
quark chemical potential and low temperature by using the NJL model with tensor-type four-point
interaction between quarks. We have considered the chiral condensate and spin-polarized condensate
simultaneously. For rather low density, the chiral condensate exists and spin-polarized condensate
does not exist. As the quark chemical potential is increased, the chiral condensate disappears and
the spin-polarized condensate arises. Thus, the spin-polarized phase may exist in the high-density
and low-temperature region in the QCD phase diagram. However, it may be concluded that the two
phases do not coexist in this model under the parameter set adopted here.

It should also be indicated that the color superconducting phase may be realized in the region with
high density and low temperature. However, at zero temperature, the spin-polarized phase may be
realized instead of the two-flavor color superconducting phase in the case with only two flavors [9]. It
would be interesting to see whether the spin-polarized phase survives at finite temperature instead of
the color superconducting phase. It is one of future important problems to investigate. Furthermore,
in this paper, we do not consider the electromagnetic field at all. It is also important to study the elec-
tromagnetic properties of the spin-polarized phase, e.g., spontaneous magnetization in compact stars.
In particular, the charge neutrality and β-equilibrium would play an essential role in a discussion of
the physics of neutron stars and/or magnetars. This is also an interesting future problem.
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Appendix A. Derivation of the thermodynamic potential at zero temperature
from that at finite temperature

In this appendix we derive the thermodynamic potential at zero temperature from that at finite
temperature. The thermodynamic potential at finite temperature is as follows:

Ω(M, F, μ, T ) = −
∑
η,τ,α

∫
�p2≤Λ2

d3 p

(2π)3

⎧⎨
⎩E (η)�p + T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠
⎞
⎠

+ T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠
⎞
⎠
⎫⎬
⎭

+ F2

2GT
+ M2

4GS
. (A1)
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If we assume that T  1, we can carry out the Taylor expansion for the logarithmic function in the
following way:

T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠
⎞
⎠→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
(

E (η)�p − μ
)

+ T exp

⎛
⎝E (η)�p − μ

T

⎞
⎠ for E (η)�p ≤ μ

T exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠ for E (η)�p > μ,

T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠
⎞
⎠→ T exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠. (A2)

Furthermore, in the region where T → 0, we can reduce the above expressions to

T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠
⎞
⎠→ −

(
E (η)�p − μ

)
θ
(
μ− E (η)�p

)
,

T log

⎛
⎝1 + exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠
⎞
⎠→ 0, (A3)

where θ(x) is the step function. Using these results, we can rewrite Ω(M, F, μ, T ) as

Ω(M, F, μ, T ) → −
∑
η,τ,α

∫
�p2≤Λ2

d3 p

(2π)3

{
E (η)�p −

(
E (η)�p − μ

)
θ
(
μ− E (η)�p

) }

+ F2

2GT
+ M2

4GS
. (A4)

This expression is simply that of the thermodynamic potential at zero temperature.

Appendix B. Derivation of the effective potential with the functional method

Let us start with the following Lagrangian density in order to derive the effective potential by using
the functional method:

L = ψ̄
(
iγ μ∂μ − m0

)
ψ + GS

(
ψ̄ψ

)2 − GT

2

(
ψ̄γ 1γ 2τ3ψ

) (
ψ̄γ1γ2τ3ψ

)
= ψ̄

(
iγ μ∂μ − m0

)
ψ + GS

(
ψ̄ψ

)2 + GT

2

(
ψ̄Σ3ψ

)2
, (B1)

where we define Σ3 ≡ −iγ 1γ 2. In order to perform the functional integration, let us introduce two
auxiliary fields, M ′ and F , and use the following unit relation:

1 =
∫

DM ′DF exp

[
−i
∫

d4x
{

M ′ + GS
(
ψ̄ψ

)}
G−1

S

{
M ′ + GS

(
ψ̄ψ

)}]

× exp

[
− i

2

∫
d4x

{
F + GT

(
ψ̄Σ3ψ

)}
G−1

T

{
F + GT

(
ψ̄Σ3ψ

)}]
. (B2)

The generating functional Z for the Lagrangian density (B1) is given as follows:

Z ∝
∫

Dψ̄Dψ exp

[
i
∫

d4x

{
ψ̄
(
iγ μ∂μ − m0

)
ψ + GS

(
ψ̄ψ

)2 + GT

2

(
ψ̄Σ3ψ

)2}]
. (B3)
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Inserting the unit relation (B2) into Z and setting M ′ = M/2, we obtain

Z ∝
∫

Dψ̄ Dψ DM DF exp

[
i
∫

d4x

{
ψ̄
(
iγ μ∂μ − Mq − FΣ3

)
ψ − M2

4GS
− F2

2GT

}]
, (B4)

where we define Mq ≡ m0 + M . Thus, we can integrate out with respect to ψ and ψ̄ easily.
After some calculations, we get

Z ∝
∫

DM DF Det
(
iγ μ∂μ − Mq − FΣ3

)
exp

[
−i
∫

d4x

(
M2

4GS
+ F2

2GT

)]

=
∫

DM DF exp

[
Tr log det

(
iγ μ∂μ − Mq − FΣ3

)− i
∫

d4x

(
M2

4GS
+ F2

2GT

)]
, (B5)

where, in the second line, the determinant, det, operates on gamma matrices. In order to compute the
trace, Tr, we change to momentum space:

Z ∝
∫

DM DF exp

[
i NC NF

∫
d4x

d4 p

i (2π)4
log det

(� p − Mq − FΣ3
)]

× exp

[
−i
∫

d4x

(
M2

4GS
+ F2

2GT

)]
, (B6)

where NC and NF mean the color and flavor numbers, respectively. Our next step is to calculate the
determinant. We can do this as follows:

det
(� p − Mq − FΣ3

) = det γ 0 (� p − Mq − FΣ3
)

= det
[

p0 − γ 0( �γ · �p + Mq + FΣ3
)]

= det

⎡
⎢⎢⎢⎢⎣p0 −

⎛
⎜⎜⎜⎜⎝

E (+)�p
E (−)�p

−E (+)�p
−E (−)�p

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

=
(

p0 − E (+)�p
) (

p0 − E (−)�p
) (

p0 + E (+)�p
) (

p0 + E (−)�p
)
. (B7)

Substituting the above result into Z in (B6), we obtain

Z ∝
∫

DM DF

× exp

[
i NC NF

∫
d4x

d4 p

i (2π)4
log
(

p0 − E (+)�p
) (

p0 − E (−)�p
) (

p0 + E (+)�p
) (

p0 + E (−)�p
)]

× exp

[
−i
∫

d4x

(
M2

4GS
+ F2

2GT

)]
. (B8)

To start with, we consider only the contents of the exponential in the second line in (B8):

∫
d4 p

i (2π)4
log
(

p0 − E (+)�p
) (

p0 − E (−)�p
) (

p0 + E (+)�p
) (

p0 + E (−)�p
)
. (B9)
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Let us differentiate and integrate the above expression with respect to E (+)�p and E (−)�p . As a result,
(B9) can be recast into

∫
d4 p

i (2π)4

∫
d E (+)�p

⎛
⎝ 1

p0 + E (+)�p
− 1

p0 − E (+)�p

⎞
⎠

+
∫

d4 p

i (2π)4

∫
d E (−)�p

⎛
⎝ 1

p0 + E (−)�p
− 1

p0 − E (−)�p

⎞
⎠. (B10)

We would like to discuss a system at finite temperature and density. So let us change the integration
to a summation by using the Matsubara method as follows:∫

d4 p

i (2π)4
f
(

p0, �p
)

→ T
∞∑

n=−∞

∫
d3 p

(2π)3
f
(
iωn + μ, �p), (B11)

where ωn is the Matsubara frequency and μ is the chemical potential. Using the formula

lim
ε→+0

T
∑

n

eiωnε

iωn − x
= lim
ε→+0

eiωnε

ex/T + 1
= 1

ex/T + 1
, (B12)

we can calculate the summation following the standard technique. As a result, we obtain

∑
η=±

∫
d3 p

(2π)3

⎡
⎣E (η)�p + μ+ T log

⎧⎨
⎩1 + exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠
⎫⎬
⎭

+ T log

⎧⎨
⎩1 + exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠
⎫⎬
⎭
⎤
⎦ . (B13)

Substituting the above result into Z , Z can be expressed as

Z ∝
∫

D MDF exp i

⎡
⎣NC NF

∫
d4x

d3 p

(2π)3
∑
η

⎛
⎝E (η)�p + T log

⎧⎨
⎩1 + exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠
⎫⎬
⎭

+ T log

⎧⎨
⎩1 + exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠
⎫⎬
⎭
⎞
⎠−

∫
d4x

(
M2

4GS
+ F2

2GT

)⎤⎦,
(B14)

where we neglect a constant term. In general, the effective action Γ and effective potential V are
defined as follows:

Z = exp(iΓ [M, F, T, μ]), V [M, F, T, μ] = −Γ [M, F, T, μ]∫
d4x

. (B15)

Thus, finally, we obtain the effective potential V as

V [M, F, T, μ] = − NC NF

∫
d3 p

(2π)3
∑
η

⎡
⎣E (η)�p + T log

⎧⎨
⎩1 + exp

⎛
⎝−

E (η)�p + μ

T

⎞
⎠
⎫⎬
⎭

+ T log

⎧⎨
⎩1 + exp

⎛
⎝−

E (η)�p − μ

T

⎞
⎠
⎫⎬
⎭
⎤
⎦+ M2

4GS
+ F2

2GT
. (B16)

This is identical with the thermodynamic potential (4.2).
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Appendix C. The domain of integration with respect to the three-momentum
in the thermodynamic potential at zero temperature

In Sect. 3, we gave the expression of the thermodynamic potential. In this appendix, we give a
domain of integration with respect to the three-momentum. We assume that M ≥ 0, F ≥ 0, and
Λ > μ without loss of generality and introduce polar coordinates (pT , θ ):

p1 = pT cos θ, p2 = pT sin θ.

Moreover, we define q ≡
√

p2
T + M2

q in order to integrate over momenta. After integrating over θ in

Eqs. (3.4)–(3.6), we obtain the thermodynamic potential Φ =∑4
i=1Φi as follows:

Φ1(M, F, μ) = 3

2π2

∫
Γ1

dq dp3 q

(√
p2

3 + (q + F)2 − μ

)
,

Γ1 =
{

p2
3 + (q + F)2 ≤ μ2, p2

3 + q2 ≤ Λ2 + M2
q , q ≥ Mq

}
Φ2(M, F, μ) = 3

2π2

∫
Γ2

dq dp3 q

(√
p2

3 + (q − F)2 − μ

)
,

Γ2 =
{

p2
3 + (q − F)2 ≤ μ2, p2

3 + q2 ≤ Λ2 + M2
q , q ≥ Mq

}
Φ3(M, F, μ) = − 3

2π2

∑
η

∫
Γ3

dq dp3 q
√

p2
3 + (q + ηF)2,

Γ3 =
{

p2
3 + q2 ≤ Λ2 + M2

q , q ≥ Mq

}

Φ4(M, F, μ) = M2

4GS
+ F2

2GT
.

Further, let us integrate the thermodynamic potential over p3 analytically. To do this we must discuss
the domain of integration carefully. First we considerΦ1 andΓ1. If the first condition inΓ1 is satisfied,
the second condition in it will be satisfied automatically. So we can reduce Γ1 to

Γ1 =
{

p2
3 + (q + F)2 ≤ μ2, q ≥ Mq

}
.

Furthermore, we can change the above condition to the following:

Γ1 =
{
−
√
μ2 − (q + F)2 ≤ p3 ≤

√
μ2 − (q + F)2, q ≥ Mq

}
.

Since the contents of the square root must be positive, the final form is

Γ1 =
{
−
√
μ2 − (q + F)2 ≤ p3 ≤

√
μ2 − (q + F)2,Mq ≤ q ≤ μ− F

}
.

However, we need the condition Mq ≤ μ− F in order to integrate over q. If Mq > μ− F , we cannot
perform the integration. Using an integration formula,∫

dx
√

x2 + a2 = 1
2

{
x
√

x2 + a2 + a2 log
(

x +
√

x2 + a2
)}
,

we were able to perform the integration over p3 easily. The final results are as follows:

If Mq > μ− F ,

Φ1(M, F, μ) = 0. (C1a)
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If Mq ≤ μ− F ,

Φ1(M, F, μ) = 3

2π2

∫ μ−F

Mq

dq q

⎧⎨
⎩− μ

√
μ2 − (q + F)2

+ (q + F)2 log

⎛
⎝
√
μ2 − (q + F)2 + μ

q + F

⎞
⎠
⎫⎬
⎭. (C1b)

Next, we considerΦ2 and Γ2. This case is more complicated than the previous case. There are five
cases for conditions to perform the integration, as follows:

If F − μ ≤ Mq ≤ F + μ ≤
√
Λ2 + M2

q ,

Φ2(M, F, μ) = 3

2π2

∫ F+μ

Mq

dq
∫ √

μ2−(q−F)2

−
√
μ2−(q−F)2

dp3 q

(√
p2

3 + (q − F)2 − μ

)
.

If Mq ≤ F − μ ≤ F + μ ≤
√
Λ2 + M2

q ,

Φ2(M, F, μ) = 3

2π2

∫ F+μ

F−μ
dq
∫ √

μ2−(q−F)2

−
√
μ2−(q−F)2

dp3 q

(√
p2

3 + (q − F)2 − μ

)
.

If Mq ≤ F − μ ≤ b ≤
√
Λ2 + M2

q ≤ F + μ,

Φ2(M, F, μ) = 3

2π2

⎛
⎝∫ b

F−μ

∫ √
μ2−(q−F)2

−
√
μ2−(q−F)2

+
∫ √

Λ2+M2
q

b

∫ √
Λ2+M2

q −q2

−
√
Λ2+M2

q −q2

⎞
⎠

× q

(√
p2

3 + (q − F)2 − μ

)
dp3 dq.

If F − μ ≤ Mq ≤ b ≤
√
Λ2 + M2

q ≤ F + μ,

Φ2(M, F, μ) = 3

2π2

⎛
⎝∫ b

Mq

∫ √
μ2−(q−F)2

−
√
μ2−(q−F)2

+
∫ √

Λ2+M2
q

b

∫ √
Λ2+M2

q −q2

−
√
Λ2+M2

q −q2

⎞
⎠

× q

(√
p2

3 + (q − F)2 − μ

)
dp3 dq.

If F − μ ≤ b ≤ Mq ≤
√
Λ2 + Mq ≤ F + μ,

Φ2(M, F, μ) = 3

2π2

∫ √
Λ2+M2

q

Mq

dq
∫ √

Λ2+M2
q −q2

−
√
Λ2+M2

q −q2
dp3 q

(√
p2

3 + (q − F)2 − μ

)
.
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Here, b is the solution for q of the simultaneous equation:

p2
3 + q2 = Λ2 + M2

q , p2
3 + (q − F)2 = μ2.

We were able to perform the integration over p3, then define two functions for simplicity as follows:

φ1(q) ≡ 3

2π2 q

⎧⎨
⎩−μ

√
μ2 − (F − q)2 + (F − q)2 log

⎛
⎝μ+

√
μ2 − (F − q)2

|F − q|

⎞
⎠
⎫⎬
⎭,

φ2(q) ≡ 3

2π2 q

⎧⎨
⎩
√
Λ2 + M2

q − q2
(
−2μ+

√
F2 +Λ2 + M2

q − 2Fq
)

+ (F − q)2 log

⎛
⎝
√

F2 +Λ2 + M2
q − 2Fq +

√
Λ2 + M2

q − q2

|F − q|

⎞
⎠
⎫⎬
⎭.

Using the above expressions, the final results are summarized as follows:

If F − μ ≤ Mq ≤ F + μ ≤
√
Λ2 + M2

q ,

Φ2(M, F, μ) =
∫ F+μ

Mq

dq φ1(q). (C2a)

If Mq ≤ F − μ ≤ F + μ ≤
√
Λ2 + M2

q ,

Φ2(M, F, μ) =
∫ F+μ

F−μ
dq φ1(q). (C2b)

If Mq ≤ F − μ ≤ b ≤
√
Λ2 + M2

q ≤ F + μ,

Φ2(M, F, μ) =
∫ b

F−μ
dq φ1(q)+

∫ √
Λ2+M2

q

b
dq φ2(q). (C2c)

If F − μ ≤ Mq ≤ b ≤
√
Λ2 + M2

q ≤ F + μ,

Φ2(M, F, μ) =
∫ b

Mq

dq φ1(q)+
∫ √

Λ2+M2
q

b
dq φ2(q). (C2d)

If F − μ ≤ b ≤ Mq ≤
√
Λ2 + Mq ≤ F + μ,

Φ2(M, F, μ) =
∫ √

Λ2+M2
q

Mq

dqφ2(q). (C2e)

Finally, we discuss Φ3 and Γ3. We can derive the domain of integration easily in this case.
The domain is re-expressed as

Γ3 =
{
−
√
Λ2 + M2

q − q2 ≤ p3 ≤
√
Λ2 + M2

q − q2, Mq ≤ q ≤
√
Λ2 + M2

q

}
.

19/23

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2016/5/053D

02/2606847 by guest on 24 April 2024



PTEP 2016, 053D02 H. Matsuoka et al.

After integrating over p3, we obtain the final result:

Φ3(M, F, μ) = − 3

2π2

∑
η

∫ √
Λ2+M2

q

Mq

dq q

⎧⎨
⎩
√
Λ2 + M2

q − q2
√
Λ2 + M2

q + 2ηq F + F2

+ (q + ηF)2 log

⎛
⎝
√
Λ2 + M2

q − q2 +
√
Λ2 + M2

q + 2ηq F + F2

|q + ηF |

⎞
⎠
⎫⎬
⎭. (C3)

Appendix D. A possibility for the origin of the tensor-type interaction in
the NJL model

In the QCD Lagrangian, the interaction part is written as

Lint = gψ̄(x) γ μψ(x) Aμ(x), (D1)

where ψ(x) and Aμ(x) (= Aa
μ(x)T

a) are quark and gluon fields, respectively, and T a repre-
sents the color su(3) generators. Here, the two-gluon exchange diagrams are depicted in Fig. D1.
These diagrams are obtained from the fourth-order perturbation of Lint:∫

d4xLint (x) ·
∫

d4yLint (y) ·
∫

d4xLint
(
x ′) ·

∫
d4xLint

(
y′)

= g4
∫

d4xd4yd4x ′d4y′ψ̄(x) γ μψ(x) Aμ(x) ψ̄ (y) γ
νψ (y) Aν(y)

× ψ̄
(
x ′) γ ρψ (x ′) Aρ

(
x ′) ψ̄ (y′) γ σψ(y′) Aσ

(
y′). (D2)

We here intend to describe the above expression as∫
d4xLeff, (D3)

which should be expressed as the four-point interaction between quarks.
The processes in Figs. D1(a) and (b) may mainly be regarded as repeated processes of the one-

gluon exchange process. Thus, we omit these processes in the contribution of the two-gluon exchange
process. Therefore, let us first consider the diagram in Fig. D1(c). Writing the spinor indices, i, j, . . .,
explicitly, we contract the bilinear field, making the Feynman propagator

g4
∫

d4xd4yd4x ′d4 y′ψ̄i (x) γ
μ
i jψ j (x) Aμ (x) ψ̄k(y) γ

ν
klψl(y) Aν(y)

× ψ̄m
(
x ′)γ ρmnψn

(
x ′) Aρ

(
x ′) ψ̄p

(
y′) γ σpqψq

(
y′) Aσ

(
y′)

−→ g4
∫

d4xd4yd4x ′d4y′L(c),

L(c) = −ψ̄i (x) γ
μ
i j ψ̄k(y) γ

ν
klγ

ρ
mnψn

(
x ′) γ σpqψq

(
y′)

× 〈ψ j (x) ψ̄m
(
x ′)〉 〈Aμ(x) Aσ

(
y′)〉 〈ψl (y) ψ̄p

(
y′)〉 〈Aν (y) Aρ

(
x ′)〉 . (D4)

Here, it should be noted that the property of the Grassmann number for the fermion field is
used. Thus, a minus sign appears. Here,

〈
ψi (x)ψ̄ j (y)

〉
and

〈
Aμ(x)Aν(y)

〉 (=T aT b
〈
Aa
μ(x)A

b
ν(y)

〉)
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(a) (b) (c) (d)

Fig. D1. Feynman diagrams of the two-gluon exchange process.

represent the Feynman propagators for quark and gluon fields, respectively:

〈
ψi (x) ψ̄ j (y)

〉 = ∫ d4 p

i (2π)4
γ μ pμ + Mq

M2
q − p2 − iε

e−i p(x−y),

〈
Aa
μ (x) Ab

ν (y)
〉
= δab

∫
d4 p

i (2π)4
1

p2 + iε

[
gμν − (1 − α)

pμ pν
p2

]
e−i p(x−y), (D5)

where a and b are color indices, Mq is the quark mass, and α is a gauge parameter. Of course, the
NJL model Lagrangian cannot be derived from QCD. Therefore, we have to give up the exact calcu-
lation. Thus, we assume the form of propagators so as to reproduce the four-point contact interaction
between quarks. As for the quark propagator, the quark mass in the propagator is artificially set to a
very large value or infinity:

〈
ψi (x) ψ̄ j (y)

〉 ∼ ∫ d4 p

i (2π)4
1i j

Mq
e−i p(x−y) = 1

i Mq
δi jδ

4 (x − y). (D6)

As for the gluon propagator, a “gluon mass” Mg is artificially introduced and is taken as a very large
value or infinity.

〈
Aa
μ(x) Ab

ν(y)
〉
= δab

∫
d4 p

i(2π)4
1

p2 + iε

[
gμν − (1 − α)

pμ pν
p2

]
e−i p(x−y)

→ δab
∫

d4 p

i (2π)4
1

p2 − M2
g + iε

[
gμν − (1 − α)

pμ pν
p2

]
e−i p(x−y)

∼ δab
∫

d4 p

i (2π)4
gμν

−M2
g

e−i p(x−y) = − 1

i M2
g
δabgμνδ

4 (x − y). (D7)

Hereafter, we denote M2
q M4

g ≡ M6
eff, in which Meff has mass dimension. Inserting the above

“approximate" propagators into Eq. (D4), then, Eq. (D4) is rewritten as

L(c) = C2
2

M6
eff

ψ̄i (x) γ
μ
i j γ

ρ
jnψn(x) ψ̄k(x) γρ,klγμ,lqψq(x)

× δ4(x − x ′) δ4(x ′ − y
)
δ4(x − y′) δ4 (y′ − y

)
, (D8)
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where C2 =∑a T aT a . Here, we again use the property of the Grassmann number. Thus, we obtain

g4
∫

d4xd4yd4x ′d4 y′L(c) = g4δ4 (0)

M6
eff

· C2
2

∫
d4x ψ̄(x) γ μγ ρψ (x) · ψ̄(x) γργμψ(x)

= −gT

∫
d4xψ̄(x) γ μγ νψ(x) · ψ̄(x) γμγνψ(x)

+ 8gT

∫
d4xψ̄(x) ψ(x) · ψ̄(x) ψ(x), (D9)

where we define gT = g4δ4(0)C2
2/M6

eff (>0) and use γ μγ ν + γ νγ μ = 2gμν and γ μγμ = 4.
Here, δ4(0) = ∫ d4k/(2π)4 · eik(x−y)

∣∣
x=y , which is regarded as a very large value or infinity in order

to ensure that gT has a finite value. Then, gT has a dimension of (mass)−2.
Next, let us consider Fig. D1(d). As is similar to the case in Fig. D1(c), we obtain

g4
∫

d4xd4yd4x ′d4y′ψ̄i (x) γ
μ
i jψ j (x) Aμ (x) ψ̄k (y) γ

ν
klψl (y) Aν(y)

× ψ̄m
(
x ′) γ ρmnψn

(
x ′) Aρ

(
x ′) ψ̄p

(
y′) γ σpqψq

(
y′) Aσ

(
y′)

−→ g4
∫

d4xd4yd4x ′d4y′L(d),

L(d) = ψ̄i (x) γ
μ
i j ψ̄k(y) γ

ν
klγ

ρ
mnψn

(
x ′) γ σpqψq

(
y′)

× 〈ψl (y) ψ̄m
(
x ′)〉 〈Aμ(x) Aρ

(
x ′)〉 〈ψ j (x) ψ̄p

(
y′)〉 〈Aν(y) Aσ

(
y′)〉 . (D10)

In order to obtain the four-point contact interaction for the NJL type, we “approximate” the
propagators in (D6) and (D7). Then,

L(d) = C2
2

M6
eff

ψ̄i (x) γ
μ
i j γ

σ
jqψq(x) ψ̄k (x) γσ,klγμ,lnψn(x)

× δ4 (x − x ′) δ4 (x ′ − y
)
δ4 (x − y′) δ4 (y′ − y

)
(D11)

is obtained. Therefore,

g4
∫

d4xd4yd4x ′d4y′L(d) = g4δ4 (0)

M6
eff

· C2
2

∫
d4x ψ̄(x) γ μγ νψ(x) · ψ̄(x) γνγμψ(x)

= −gT

∫
d4xψ̄(x) γ μγ νψ(x) · ψ̄(x) γμγνψ(x)

+ 8gT

∫
d4xψ̄(x) ψ(x) · ψ̄(x) ψ(x). (D12)

Finally, we obtain the effective Lagrangian density originating from the two-gluon exchange
contribution between quarks, as illustrated in Fig. D2, as follows:∫

d4xLeff = g4
∫

d4xd4yd4x ′d4y′ (L(c) + L(d)
)

=
∫

d4x

(
−GT

4
ψ̄(x)γ μγ νψ(x) · ψ̄(x)γμγνψ(x)+ 2GT ψ̄(x)ψ(x) · ψ̄(x)ψ(x)

)
,

(D13)

where we define GT ≡ 8gT , where GT > 0. We take GT = 11 GeV−2 in this paper. The first term
corresponds to our tensor-type four-point interaction. Introducing the degree of freedom of the flavor,
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Fig. D2. Feynman diagrams of the two-gluon exchange process.

the tensor part is written as

LT = −GT

4

(
ψ̄γ μγ ν−→τ ψ) (ψ̄γμγν−→τ ψ), (D14)

which is identical with the first term in Eq. (2.4). Of course, the above treatment is nothing but a
crude approximation. Thus, we have to add another term so as to retain the chiral symmetry that
the QCD has. The second term in Eq. (D13) represents the scalar–scalar interaction appearing in the
original NJL model Lagrangian. However, the one-gluon exchange contribution may be washed out
of this contribution by the two-gluon exchange.
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